

Curriculum Structure and Curriculum Content for the Academic Batch 2020-24

School of Mechanical Engineering Program: Bachelor of Engineering

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program- Objectives	•
Curriculum Structure-Overall	7
Curriculum Structure-Semester wise	8
Semester - I	8
Semester - II	9
Semester- III	10
Semester- IV	11
Semester- V	13
Semester- VI	14
Semester- VII	14
Semester- VIII	15
List of Open Electives	16
List of Program Electives	17
Curriculum Content- Course wise	19

Vision and Mission of KLE Technological University

Vision

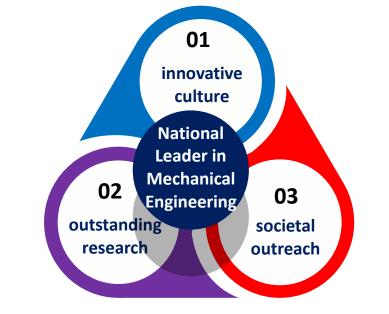
KLE Technological University will be a national leader in Higher Education–recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

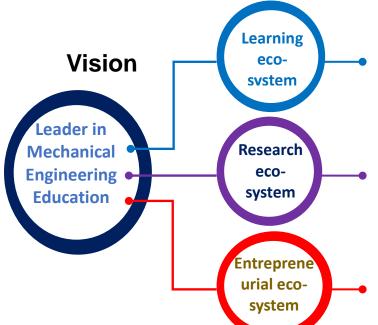
Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.


As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.


Vision and Mission Statements of the School / Department

Vision

KLE Tech - School of Mechanical Engineering will be a national leader in mechanical engineering education - recognized for innovative culture, outstanding research and societal outreach.

Mission

Offer programs in an **engaging and experiential learning environment**, preparing students for success in their lives and professional careers.

Engage in **disciplinary and interdisciplinary research** that is aligned to areas of national importance and priority.

Contribute to **socio-economic development** of the region for enhanced quality of life.

KLE Tech School of Mechanical Engineering shall accomplish its mission by working in a team, with the spirit of collaboration and partnership.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

	Program Educational Objectives -PEOs
Scł	nool of Mechanical Engineering accomplishments that graduates are expected to attain
	er 3 to 5 years of graduation
1.	Apply problem solving skills
	Graduates will demonstrate technical competence in mechanical engineering domain as they apply problem solving skills to conceive, analyze, design and develop products,
•	processes and systems.
2.	Embrace leadership roles Graduates will actively embrace leadership roles and strive hard to achieve professional and organizational goals with adherence to professional and ethical values, team expectations and sensitivities.
3.	Contribute to society
	Graduates will be committed to practice of engineering in industry and government organizations meeting the growing expectations of stake holders and also contribute to the societal development.
4.	Pursue new career opportunities
	Graduates will actively participate in on-going professional development opportunities, engage in continuous updating and adapting core knowledge and abilities to compete in the ever-changing global enterprise.
	Program Outcomes-POs
PO	1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
PO	 Problem Analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO	3. Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
PO	4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO	5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- PO7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. Individual and Team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- PO11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives -PSOs

- PSO1. Engineering Drawing & Modelling: Use modern CAD tools and appropriate design standards to develop component and system drawings.
- PSO2. Manufacturing: Apply the knowledge of manufacturing processes to develop a component/system with appropriate consideration for productivity, quality and cost.
- PSO3. Technology Integration: Acquire skills to identify appropriate technologies and integrate to offer innovative solutions to real-life problems.

Curriculum Structure-Overall

Semeste	r: 1 to 8 (2020-24Batch)					Tot	tal Program Credits:177
	1	I	III	IV	V	VI	VII	VIII
	Single Variable Calculus (18EMAB101)	Multivariable Calculus (18EMAB102)	Calculus & Integral Transforms (Diploma Students) (15EMAB231)	Vector Calculus & Differential Equations (Diploma Students) (15EMAB241)	Numerical methods and Statistics (Diploma Students) (19EMAB301)	Professional Aptitude & Logical Reasoning (16EHSC301)	Operations Research (15EMEC401)	Program Elective - 6 (15EMEE4XX)
	Engineering Chemistry (15ECHB101)	Engineering Physics (15EPHB102)	Statistics and Integral Transforms (15EMAB201)	Numerical Methods and Partial Differential Equations (19EMAB206)	Fluid Mechanics & Hydraulic Machines (15EMEC301)	Heat and Mass Transfer (15EMEC305)	Design of Thermal Systems (15EMEC402)	Open Elective (15EMEO45X)
e	C Programming for Problem solving (18ECSP101)	Engineering Mechanics (15ECVF102)	Mechanics of Materials (15EMEF201)	Fundamentals of Machine Design (15EMEC203)	Design of Machine Elements (15EMEC304)	Metrology and Quality Engineering (15EMEC302)	IC Engines (19EMEC401)	Internship – Training (Optional In place of 1 & 2) (18EMEI493)
Course with course code	Engineering Exploration (15ECRP101)	Computer Aided Engineering Drawing (15EMEP101)	Manufacturing Processes (15EMEC201)	Machines & Mechanisms (15EMEC204)	Finite Element Methods (19EMEC301)	Program Elective – 2 (15EMEE3XX)	Thermal Engineering Lab (19EMEP401)	Capstone Project / Internship – Project (20EMEW402/ 20EMEW494)
ourse wit	Basic Electronics (18EECF102)	Basic Electrical Engineering (18EEEF102)	Engineering Thermodynamics (15EMEC202)	Engineering Materials (15EMEF202)	Program Elective-1 (15EMEE3XX)	Program Elective – 3 (15EMEE3XX)	Program Elective – 4 (15EMEE4XX)	
ŭ	Basic Mechanical Engg. (15EMEF101)	Design Thinking for Social Innovation (20EHSP101)	Control Systems (19EMEC201)	Mechatronics (19EMEC202)	CAD Modeling & PLM Lab (19EMEP301)	Metrology and Quality Engineering Lab (15EMEP301)	Program Elective – 5 (15EMEE4XX)	
	Professional Communication (15EHSH101)	Engineering Physics Lab (16EPHP102)	Manufacturing Processes Lab (16EMEP201)	Manufacturing Processes-II Lab (18EMEP201)	Automation Lab (15EMEP303)	Minor Project (18EMEW301)	Senior Design Project (20EMEW401)	
			Control Systems Lab (19EMEP201)	Machines & Mechanisms Lab (15EMEP204)	FEM Lab (19EMEP302)	Industry Readiness & Leadership Skills (22EHSH302)	CIPE/EVS (15EHSA401)	
			Machine Drawing Lab (18EMEP203)	Engineering Materials Lab (15EMEP202)	Mini Project (15EMEW301)			
				Mechatronics Lab(19EMEP202)	Arithmetical Thinking & Analytical Reasoning (22EHSH301)			
Credits	23	21	22	24	24.5	23.5	22	17

Curriculum Structure-Semester wise

$\mathsf{Semester}\,\mathsf{-}\mathsf{I}\,\underline{\leftarrow}$

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15ECHB101	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP101	<u>C Programming for Problem</u> solving	ES	0-0-3	3	6	80	20	100	3 hours
4	15ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF102	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	15EMEF101	Basic Mechanical Engg.	ES	2-1-0	3	4	50	50	100	3 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
		TOTAL		14-3-6	23	32				

$\mathsf{Semester}\,\mathsf{-II}\underline{\leftarrow}$

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15EPHB102	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF102	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	15EMEP101	Computer Aided Engineering Drawing	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF102	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	3	80	20	100	3 hours
7	16EPHP102	Engineering Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
	·	TOTAL		14-2-5	21	27				

Semester- III \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	15EMAB231	Calculus & Integral Transforms (Diploma Students)	BS	4-0-0	4	4	50	50	100	3 hours
2	15EMAB201	Statistics and Integral Transforms	BS	4-0-0	4	4	50	50	100	3 hours
3	15EMEF201	Mechanics of Materials	ES	3-1-0	4	5	50	50	100	3 hours
4	15EMEC201	Manufacturing Processes	PSC	4-0-0	4	4	50	50	100	3 hours
5	15EMEC202	Engineering Thermodynamics	PSC	3-0-0	3	3	50	50	100	3 hours
6	19EMEC201	Control Systems	PSC	2-1-0	3	4	50	50	100	3 hours
7	16EMEP201	Manufacturing Processes Lab	PSC	0-0-1	1	2	80	20	100	2 hours
8	19EMEP201	Control Systems Lab	PSC	0-0-2	2	4	80	20	100	2 hours
9	18EMEP203	Machine Drawing Lab	PSC	0-0-1	1	2	80	20	100	2 hours
		TOTAL		16-2-4	22	28				

Semester- IV \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	15EMAB241	Vector Calculus & Differential Equations (Diploma Students)	BS	4-0-0	4	4	50	50	100	3 hours
2	19EMAB206	Numerical Methods and Partial Differential Equations	BS	3-1-0	4	5	50	50	100	3 hours
3	15EMEC203	Fundamentals of Machine Design	PSC	3-1-0	4	5	50	50	100	3 hours
4	15EMEC204	Machines & Mechanisms	PSC	4-0-0	4	4	50	50	100	3 hours
5	15EMEF202	Engineering Materials	ES	4-0-0	4	4	50	50	100	3 hours
6	19EMEC202	<u>Mechatronics</u>	PSC	2-0-0	2	2	50	50	100	3 hours
7	18EMEP201	Manufacturing Processes-II Lab	PSC	0-0-2	2	4	80	20	100	2 hours
8	15EMEP204	Machines & Mechanisms Lab	PSC	0-0-1	1	2	80	20	100	2 hours
9	15EMEP202	Engineering Materials Lab.	PSC	0-0-1	1	2	80	20	100	2 hours
10	10 19EMEP202 Mechatronics Lab		PSC	0-0-2	2	4	80	20	100	2 hours
		TOTAL		16-2-6	24	32				

Semester- V \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	19EMAB301	<u>Numerical methods and</u> <u>Statistics</u> (Diploma Students)	BS	3-0-1	4	4	50	50	100	3 Hours
2	15EMEC301	Fluid Mechanics & Hydraulic Machines	PSC	4-0-0	4	4	50	50	100	3 Hours
3	15EMEC304	Design of Machine Elements	PSC	3-1-0	4	5	50	50	100	3 Hours
4	19EMEC301	Finite Element Methods	PSC	3-0-0	3	3	50	50	100	3 Hours
5	15EMEE3XX	Program Elective-1	PE	3-0-0	3	3	50	50	100	3 Hours
6	19EMEP301	CAD Modeling & PLM Lab	PSC	2-0-2	4	6	80	20	100	2 Hours
7	15EMEP303	Automation Lab	PSC	0-0-2	2	4	80	20	100	2 Hours
8	19EMEP302	FEM Lab	PSC	0-0-1	1	2	80	20	100	2 Hours
9	15EMEW301	Mini Project	PRJ	0-0-3	3	6	50	50	100	3 Hours
10	22EHSH301	Arithmetical Thinking & Analytical Reasoning	HS		0.5					
		TOTAL		15-1-8	24.5	33				

Semester- VI \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	16EHSC301	Professional Aptitude & Logical Reasoning	PSC	3-0-0	3	3	50	50	100	3 Hours
2	15EMEC305	Heat and Mass Transfer	PSC	3-0-0	3	3	50	50	100	3 Hours
3	15EMEC302	Metrology and Quality Engineering	PSC	4-0-0	4	4	50	50	100	3 Hours
4	15EMEE3XX	Program Elective - 2	PE	3-0-0	3	3	50	50	100	3 Hours
5	15EMEE3XX	Program Elective - 3	PE	3-0-0	3	3	50	50	100	3 Hours
6	15EMEP301	Metrology and Quality Engineering Lab	PSC	0-0-1	1	2	80	20	100	2 Hours
7	18EMEW301	Minor Project	PRJ	0-0-6	6	12	80	20	100	2 Hours
8	22EHSH302	Industry Readiness & Leadership Skills	HS		0.5					
		TOTAL		16-0-7	23.5	30				

Semester- VII \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	15EMEC401	Operations Research	PSC	3-1-0	4	5	50	50	100	3 Hours
2	15EMEC402	Design of Thermal Systems	PSC	3-0-0	3	3	50	50	100	3 Hours
3	19EMEC401	IC Engines	PSC	2-0-0	2	2	50	50	100	3 Hours
4	19EMEP401	Thermal Engineering Lab	PSC	0-0-1	1	2	80	20	100	2 Hours
5	15EMEE4XX	Program Elective – 4	PE	3-0-0	3	3	50	50	100	3 Hours
6	15EMEE4XX	Program Elective – 5	PE	3-0-0	3	3	50	50	100	3 Hours
7	20EMEW401	Senior Design Project	PW	0-0-6	6	12	50	50	100	3 Hours
8	15EHSA401	<u>CIPE/EVS</u>	CNC	Audit	0	2	50	50	100	3 Hours
	·	TOTAL		14-1-7	22	32				

Semester- VIII \leftarrow

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	15EMEE4XX	Program Elective - 6	PE	3-0-0	3	3	50	50	100	3 Hours
2	15EMEO45X	Open Elective	OE	3-0-0	3	3	50	50	100	3 Hours
3	18EMEI493	Internship – Training (Optional In place of 1 & 2)		0-0-6	6		80	20	100	3 Hours
4	20EMEW402 / 20EMEW494	Capstone Project / Internship - Project	PW	0-0-11	11	22	50	50	100	3 Hours
	TOTAL			6-0-17	17	28				

Semester	1	II	III	IV	V	VI	VII	VIII	Total
Credits	23	21	22	24	24.5	23.5	22	17	177

List of Open Electives \leftarrow

Sr.No	Name of the Course	Course Code
1	Introduction to Nano-Science & Nano Technology	15EMEO401
2	Nano Technology	15EMEO402
3	Design of Experiments	15EMEO403
4	Engine Management Systems	15EMEO404

List of Program Electives \leftarrow

Sr.No	Name of the Course	Course Code
1	Mechanical Vibration	15EMEE301
2	Product Innovation	15EMEE304
3	Advanced Machining Processes	15EMEE305
4	Turbo Machines	18EMEE303
5	Additive Manufacturing Processes	22EMEE301
6	Thermal Management of EV Battery Systems	22EMEE302
7	Advanced CAE – I	18EMEE301
8	Bionic Design	22EMEE303
9	Programming	18EMEE302
10	Advanced Statistics and Machine Learning	19EMEE302
11	Failure Analysis in Design	15EMEE302
12	Product Design & Development	19EMEE303
13	Computer Integrated Manufacturing	15EMEE306
14	HVAC Systems	15EMEE308
15	Noise, Vibration and Harshness (NVH)	22EMEE304
16	Piping systems Design	15EMEE303
17	Design for Additive Manufacturing (DfAM) Lab	22EMEE305
18	Green Hydrogen	22EMEE306
19	Advanced CAE – II	19EMEE304
20	PLM Technical	19EMEE305
21	Biomechanics	22EMEE307
22	Vehicle Structure and Design Optimization	19EMEE301
23	Machine Learning Applications	19EMEE307
24	Mechanics of Composite Materials	15EMEE401
25	Design of Automotive Power Train	15EMEE402
26	Design & Analysis of Experiments	15EMEE403
27	Dynamics & Durability of Vehicles	19EMEE401
28	Operations Management	15EMEE405
29	Supply Chain Management	15EMEE406
30	Modern Trends in Manufacturing	15EMEE417

31	Computational Heat Transfer and Fluid Flow	15EMEE407
32	Fundamentals of Gas Turbines	15EMEE408
33	Optimization Methods	22EMEE401
34	Aircraft Systems and Design	15EMEE413
35	Industrial Engineering: Methods & Practices	15EMEE414
36	Advanced Energy technology	15EMEE415
37	Thermal Management of Electronic Equipment	15EMEE416

Curriculum Content- Course wise

←<u>BACK TO SEMESTER-I</u>

Program: UG	Semester: I	
Course Title: Single variable Calculus		Course Code: 18EMAB101
L-T-P: 4-1-0	Credits: 05	Contact Hours: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration: 3hrs	

Unit I

1. Functions, Graphs and Models 07 hours

Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MATLAB: Graphing functions, Domain-Range and Interpreting the models

2. Calculus of functions and models 13 hours

Limit of a function, Infinite limits- graph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton- Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L- Hospital's rule-Examples

MATLAB: optimization problems. Curvature problems

Unit II

3. Infinite Series 06 hours

Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MATLAB: Convergence of series

4. Integral calculus 14 hours

Tracing of standard curves in Cartesian form ,Parametric form and Polar form; Beta and gamma function, relation between them, evaluation of integrals using Beta and gamma functions; Applications to find arc length, Area, Volume and surface area (Cartesian, parametric and polar curves). Approximate integration- Trapezoidal rule, Simpson's 1/3 rule

MATLAB: problems on arc length, area, volume and surface area

Unit III

5. Ordinary differential equations of first order 10 hours

(a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method

(b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies.

MATLAB: Solve differential equations

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7ed 2010.

Reference Books:

- 1. Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

←BACK TO SEMESTER-I

Program: UG		Semester: I		
Course Title: Engineering Chemistry		Course Code: 15ECHB101		
L-T-P: 3-0-0	Credits: 03	Contact Hours: 3 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration	: 3hrs		
Unit-I				

1. Pure substances

Properties of pure substance (Steam), two property rule, T-H diagram, formation of steam at constant pressure. Different states of steam: Wet steam-dryness fraction, determination by separating-throttling calorimeter, Dry saturated steam, Superheated steam, thermodynamic parameters of steam, steam table, numerical problems.

T-V, P-V & P-T diagrams of pure substance taking water as example. Triple point & critical point. Sub-cooled liquid, saturated liquid, mixture of saturated liquid & vapor, Saturated vapor & superheated vapor states. 08Hrs

2. Real and ideal gases

Properties of Real and Ideal gases. Vander Waal's equation, Vander Waal's constant in terms of critical properties –numerical problems. Compressibility factor, compressibility chart and Law of corresponding state. Ideal gas: equation of state, internal energy and enthalpy as functions of temperature. Ideal gas mixture: Dalton's law of additive pressures and Amagat's law of additive volumes. Terms used in the analysis of mixture of gases - numerical problems. 05Hrs

3. Engineering Materials

Ferrous metals – properties and applications of Iron and Steel. Ferrous metal s – properties and Applications of copper and aluminium.

Cement- properties, mechanism of setting & hardening of cement and applications.

Lubricants- Properties –viscosity, flash point, fire point, cloud point and pour point, mechanismhydrodynamic and boundary lubrication and applications. 03Hrs

Unit – II

4. Fuel Chemistry

Fuels, classification, determination of calorific value of a fuel (solid / liquid fuel by Bomb calorimeter), coal analysis- Numerical problems. Petroleum - cracking, Octane number, Cetane number, reforming, and mechanism of knocking in Petrol and Diesel engines. Renewable energy sources – power alcohol and bio diesel. 06Hrs

5. Energy Storage and Conversion Systems

Electrode potential, Nernst equation, Formation of a cell; Reference electrodes – Calomel electrode and Determination of electrode potential using calomel electrode, numerical problems on E, $E_{cell,}$, $E_{cell,}^0$

Batteries: Classification, characteristics, Lead-acid and Li ion batteries. Fuel cells: Methanol-O₂ fuel cell.

06Hrs

6. Surface Chemistry

Corrosion: Electrochemical theory of corrosion taking iron as an example; corrosion control – galvanization and tinning. Metal Finishing: Technological importance of metal finishing, Electroplating, factors affecting nature of electrodeposit- Throwing power of plating bath solutionnumerical problems. Electro less plating – advantages over electroplating, lector less plating of copper and its applications in the manufacture of printed circuit board. 04Hrs

Unit – III

7. Polymers

Introduction, free radical mechanism of addition polymerization taking Ethylene as an example; commercial polymers - Plexi glass, polyurethane and polystyrene. Adhesives – synthesis, properties as applications of Epoxy resins; Polymer Composites - structure, properties and applications of Kevlar and carbon fiber.

04 Hrs 8. Environmental Chemistry:

Water: Sources and ill effects of water pollutants- fluoride and nitrate; Determination of total hardness of water by EDTS method – numerical problems. Sewage: Determination of biological oxygen demand by Winkler's method – numerical problems and determination of chemical oxygen demand - numerical problems,

OHrs

Text Books:

- 1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009, New Delhi.
- 2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat Rai Publications, 2006, New Delhi.

Reference Books:

- 1. An introduction to Thermodynamics, Y V C Rao, Revised Edition, University Press, 2009 Hyderabad.
- 2. Hand book of batteries , David Linden, Thomas B Reddy, 3rd edition McGraw Hill publications, 2001.
- 3. Puri B. R., Sharma L.R. and Pathania M. S., Principles of Physical Chemistry, 33rd Edition, S Nagin Chand & Co.,1992.
- 4. Fontana M G, Corrosion Engineering, 3rd Edition, McGraw Hill Publications, 1986.
- 5. Billmeyer F W, Text Book of Polymer Science, John Wiley & Son's, 1994.
- 6. Principles of Polymer Chemistry- A. Ravve Plelum Press, New York and London.
- 7. Callister William D, Materials Science and Engineering: An introduction, John Wiley and Sons 2007: 721 pages.

← BACK TO SEMESTER-I

Pro	gram: UG		Semester: I	
	rse Title: C Programming for Problem	Solving	Course Code: 18ECSP101	
	P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week	
SA	Marks: 80	ESA Marks: 20	Total Marks: 100	
	ching Hrs: 78	Exam Duration: 3 hrs		
1	Introduction to Problem solving Introduction to algorithms / flowchaproblems.		o down design, elementary	3 hrs
2	Basics of C programming language Characteristics and uses of C, Struct Variables, Constants, Operators, Da		-	15 hrs
3	Decision control statements Conditional branching statements: i statement, unconditional branching Introduction to Debugging Skills Introduction to Test Driven Program	statements: break, conti		12 hrs
1	Iterative statements while, do while, for, nested statements			
5	Functions Introduction, Function declaration, parameters to functions, introductio Introduction to Coding Standards		atement, passing	10 hrs
5	Arrays and Strings Introduction, Declaration, Accessing one dimensional array, Operations of Introduction to Code Optimization a	on two dimensional array		15 hrs
7	Pointers Introduction, declaring pointer, poir passing arguments to functions usir a function.			08 hrs
8	Structures and Unions Introduction, passing structures to f	unctions, Array of structu	ures, Unions	05 hrs
	t Books 1. R.G.Dromey, How to Solve it by Co 2. Yashvant Kanetkar, Let us C ,15 th e erence Books: B W Kernighan, D M Ritchie, The Pro B S Gottfried, Programming with C, B.A. Forouzan, R.F. Gilberg, A Struct 2008.	omputer, 1ed, PHI, 2008. ed, BPS Publication, 2016 ogramming language C, 2 2ed, TMH, 2006.	ed, PHI, 2004.	ning,

←<u>BACK TO SEMESTER-I</u>

Progra	am: UG		Sen	mester: I		
Cours	e Code: 15ECRP101	Course Title: Engineerin	g Exploration			
L-T-P:	0-0-3	Credits: 3		ntact Hrs: 6 /week		
CIE M	arks: 80	SEE Marks: 20	Tot	al Marks: 100		
Teach	ing : 78 Hrs.		SEE 3 H	Exam Duration:		
No		Content				
1	Introduction to Engineering and I			Sessions 1		
2	Role of Analysis in Engineering, A			2		
3	Data Analysis Graphing			2		
4	Basics of Engineering Design, Mu	Itidisciplinary Nature of Eng	gineering Design	5		
5	Project Management					
6	Sustainability in Engineering			2		
7	Ethics					
8	Modeling, Simulation and Data Acquisition using Software Tool					
9	Platform based development : Ar	duino		3		
9	Course Project			3		
Refere	ence Books:			I		
1.	Engineering Fundamentals & P Steven, Mc GrawHill Higher Educ	e ,	ide, Roland Jenison	n, Larry Northup,		
2.	Engineering Exploration (Edited	Book, 2008) by Pearson Pu	blication			
Evalua	ation Scheme					
Chap No		ne	Weightage in	percentage		
1	Introduction to Engineering	and Engineering Study	-			
2	Role of Analysis in Engineeri	ng	10)		
3	Analysis Methodology					
4	Data Analysis Graphing		10)		
5	Basics of Engineering Design 20					

Data Analysis Graphing	10
Basics of Engineering Design	20
Multidisciplinary Nature of Engineering Design	
Project Management	5
Sustainability in Engineering	10
Ethics	5
Modelling, Simulation and Data Acquisition using	-
Software Tool	
Platform Based Development: Arduino	-
Course Project	40
	Basics of Engineering Design Multidisciplinary Nature of Engineering Design Project Management Sustainability in Engineering Ethics Modelling, Simulation and Data Acquisition using Software Tool Platform Based Development: Arduino

←<u>BACK TO SEMESTER-I</u>

Course Title: Basic ElectronicsL-T-P: 4-0-0Credits: 4ISA Marks: 50ESA Marks: 50Teaching Hours: 50 Hrs.Examination Duration: 3 Hrs.Unit IChapter 1: Overview of Electronics in Mechanical Engineer	Course Code: 18EECF102 Contact Hours: 4Hrs/week Total Marks: 100	Teaching Hours
ISA Marks: 50 ESA Marks: 50 Teaching Hours: 50 Hrs. Examination Duration: 3 Hrs. Unit I Chapter 1: Overview of Electronics in Mechanical Engineer	Total Marks: 100	Hours
Teaching Hours: 50 Hrs. Examination Duration: 3 Hrs. Unit I Chapter 1: Overview of Electronics in Mechanical Engineer		
Unit I Chapter 1: Overview of Electronics in Mechanical Engineer		
Chapter 1: Overview of Electronics in Mechanical Engineer		
		03
	ring	
Definition & overview of Mechatronics, Mechatron	ics and Design Innovation,	
Mechatronics and Manufacturing, Mechatronics and Ed	ucation; Typical Mechatronics	
Components; Sensors and Transducers.		
Chapter 2: Semiconductor Devices and Applications:		10
PN junction diode, characteristics and parameters, dioc	•••	
rectifier, full wave bridge rectifier, full wave bridge rectifie	· · · · ·	
Voltage regulator design, BJT, Darlington Pair, JFET, MOSFE	T, UJT, SCR.	
Chapter 3: Operational Amplifiers:		08
Ideal op-amp characteristics, op-amp applications: Compared		
inverting amplifier, Voltage follower, Integration, Differen	itiation, Adder, Subtractor and	
numerical as applicable.		
Unit II		13
Chapter 4: Digital Logic:		
Digital Number system: Binary & Hexadecimal number syst		
system, Gray code, Data word representation, Binary Aritl		
gates, Combinational & Sequential circuits, Adders, F	lip-Flops, Registers, Counters,	
Multiplexer.		
Introduction to Digital Electronics (Text-2):		
Introduction, Switching and Logic Levels using circuits, Dig	-	
9.3).Number system: Binary, Octal Decimal and Hexade		
Number system, Gray code, Data word representation	-	
Algebra: Laws, rules & theorems of Boolean algebra, Su		
products of sum form (POS) of Boolean functions. Study o	• • • • •	
2, 3 & 4 variables only. Logic gates, Adders, Encoder, 1	· · ·	
multiplexer. Combinational & Sequential circuits, Latches a	na Fiip-Fiops(SK, JK, D, T),	00
Chanten Fr Concern and Transitioners		06
Chapter 5: Sensors and Transducers :	Contact tuno Machanical	
Introduction, Classification of sensors and transducers, switches, Non-contact type - proximity sensors & Hall sensor		
	ors, principle of working of light	
sensors, Future Challenges Unit – III		06
Chapter 6: Signal Conditioning:		00
Analog & Digital signals, Digital to Analog Conversion,	R-2R DAC Analog to Digital	
Conversion, SAR ADC, Data Acquisition.	N-2N DAC, Analog to Digital	
Chapter 7: Case Studies of Mechatronic Systems:		04
Automatic Camera, Drilling Machine, Bar code reader.		04

Text Books

- 1. David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.
- 2. Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice Hall India, 2000.
- 3. W.Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", 3rd edition Pearson Education, 2005.
- 4. David Bradley and David W., "Mechatronics in Action", 2nd edition, Springer, 2010

References

- 1. David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measurement Systems", TMH 3rd edition, 2007.
- 2. K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- 3. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.
- 4. Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001
- 5. BoylesteadNashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice Hall India, 2000.
- 6. RamakantGayekawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

← BACK TO SEMESTER-I

Program: U	JG				Semester: I	
	e: Basic Mechanical Engi	ineering			Course code: 15EMEF101	
L-T-P: 2-1-0		Credits: 3			Contact Hrs.: 4 hrs/week	
CIE Marks:	50	SEE Marks: 5	0		Total Marks: 100	
Teaching H	rs: 50				Exam Duration: 3 hrs	
Chapter	Contents		Hours		Tutorial	Sessions
		ι	Jnit I			
1	Introduction to Mechan Engineering: Definition of engineerin Mechanical Engineerin of Mechanical Engineer are Mechanical Engineers' achievements.	ng, g, Branches ring, Who ers?,	2	Ma Pre	it to Workshop and achine Shop, Tools, Safety ecautions deo presentations	1
2	Achievements.Manufacturing Engineering: Basics of Manufacturing What is manufacturing?, The main manufacturing sectors, The importance of the main manufacturing sectors to the Indian economy, Scales of production Classification of manufacturing: CNC machines, Mechatronics and applications8Demonstration on working of Lathe, milling, drilling, grinding machines Demonstration on Welding (Electric Arc Welding, Gas Welding, Soldering) Demonstration and Exercises on Sheet metal work.		5			
		Unit II				
3	 Design Engineering: Po Transmission Elements Overview Design Application: Belt Drives. Types, L Belt. Velocity Ratio, Tension. Ratio of Ter Power Transmitted, Problems. Gears. Spur Gear, Ra Pinion, Worm Gear, Helical Gears. Speed and Power in Gear part of Compound Gear Numerical Problems Ball and Roller Bear 	ength of Initial nsions. Numerical ack and Bevel Gear, I, Torque, pair. Simple r trains.	6	<u>mo</u> alu	sign Problems like <u>a</u> <u>oving experience</u> , iminium can crusher deo presentations	5
	Applications.					

	Movers. Internal Combustion Engines: Classification, IC engine parts, 2 stroke SI and CI engine, 4 Stroke SI and CI Engine, PV diagrams of Otto and Diesel cycles, Comparison of 2 stroke and 4 stroke engine, comparison of CI and SI engine, Problems on Engine Performance, Future trends in IC engines.		requirement of a bike, car or any machine Video presentations	
	UNIT III			
5	Thermal Engineering 2: Thermal Systems' Applications Refrigeration system, Air conditioning system, Pumps, Blowers and Compressors, Turbines, and their working principle and specifications.	5	Case study on selection of various thermal systems Video presentations	1

Text Books:

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,–Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology Vol I & II , 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

← BACK TO SEMESTER-I

Program: UG		Semeste	er: I
Course Code: 15EHSH101	Course Title: Professional Communic	ation	
L-T-P: 1-1-0	Credits: 2	Contact Hrs: 3 hrs/week	
ESA Marks: 50	ISA Marks: 50	Total Ma	arks: 10
Teaching Hrs: 42		Exam Du 3 hrs	uration:
	Content		Hrs
Chapter No. 1. Basics- English Co	mmunication		9 hrs
Course Introduction, Explanation	n of template mix-ups with correct usages 8	& necessity of	
grammar in error detection, Usag	e of tenses		
Chapter No. 2. Vocabulary and gr	rammar		6 hrs
Vocabulary, Word Formation and	Active and Passive Voice		
Chapter No. 3. Bouncing Practice			
Definition and types of bouncing	g and its practice with examples, reading sl	kills, free style	
speech. Individual presentation.			
Chapter No. 4. Rephrasing and St	ructures		8 hrs
Comprehension and Rephrasing,	PNQ Paradigm and Structural practice		
Chapter No. 5. Dialogues			3 hrs
Introduction of dialogues, Situation	onal Role plays,		
Chapter No. 6. Business Commun	nication		9 hrs
Covering letter, formal letters, Co	nstruction of paragraphs on any given general	topic.	
Text Book:			
References:			
References:			
1. Collins Cobuild Advanced	c ,		
, , ,	nediate English Grammar, Cambridge Universi	•	
Martin Hewings- Advance	ed English Grammar, Cambridge University Pre	SS.	

←<u>BACK TO SEMESTER-II</u>

Program: UG	Semester: II			
Course Title: Multivariable calcul	us	Course Code: 18EMAB102		
L-T-P: 4-1-0	Credits: 05	Contact Hours: 6 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Examination Duration: 3hrs.			
	Unit I			
1. Partial differentiation		12 hours		
Function of several var	iables, Partial derivatives, Level	curves, Chain rule, Errors and		
	value problems. Lagrange's multipli			
2. Double integrals		08 hours		
0	gular and polar coordinates, Change	e the order of integration. Change		
	plication of double integrals			
MATLAB: optimization pro	blems, application of double integr	als		
	Unit II			
3. Triple integrals		07 hours		
	, change to Cylindrical and Spherica	al coordinates Application of Triple		
integrals				
4. Calculus of Vector Fields		13 hours		
	d directional derivatives. Line and S	• .		
	ons. Green's theorem, Divergence o	f vector field, Divergence theorem,		
Curl of vector field. Stokes				
MATLAB: application of th	iple integrals, Vector calculus probl Unit III	enis		
5. Differential equations of		(5+5) hours		
•	uations of second and higher ord			
method of Variation	of parameters. Initial and			
	nd order differential equations-Ne	, , ,		
	Series solution of differential equa			
Differential equations.	Series solution of uncerential equa	tions. Valuery of series solution of		
MATLAB: application of di	fferential equations			
Text Books :				
1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010				
Reference Books:				
	d Multivariable, Hughues-Hallett Gl	eason, Wiley India Ed, 4ed, 2009.		
-	George B Thomas, Pearson India, 12	· · · · · · · · · · · · · · · · · · ·		

←<u>BACK TO SEMESTER-II</u>

Program: UG			Semester: II		
	e: 15EPHB102	Course Title: Engineering P	-		
L-T-P-S: 3-0-0 ISA Marks: 50		Credits: 3	Contact Hrs.: 03 Hrs./Week	8	
		ESA Marks: 50	Total Marks: 10	0	
Teaching H		Exam Duration:3 Hrs.		•	
icacining ii	13. 40 1113.	Unit I			
		0			
Chapter 1	•	ematics in One Dimension		6 hours	
	Introduction, Motion Diagrams, The Particle Model, Position Model, Linear				
	Velocity and Acceleration, Uniform Motion, Instantaneous Velocity, Finding				
	•	Notion with Constant Acceler			
		aneous Acceleration, Numerio	cals.		
Chapter 2	Kinematics in Two Dime			6 hours	
		Properties of vectors, Coord	linate Systems and Vector		
	Components, Vector Alg				
		celeration vectors, Projectile			
		, Velocity and Acceleration in			
Chaptor 2	Force and Motion	tion and Angular Acceleratior	n, Numericais.	4 hours	
Chapter 3		fying Forces, A Virtual Experin	nont	4 110015	
	•	ton's Second Law, Free-Body			
	Newton's First Law, New	Unit II	Diagranis, Applications.		
Chapter 4	Dynamics I	onit ii		5 hours	
	Equilibrium using Newton's second Law, Friction, Drag,				
		Analyzing Interacting Object	-		
	Applications.				
Chapter 5	Dynamics II			6 hours	
	Motion in a plane, Dynamics in Two Dimension, Velocity and Acceleration in				
	Uniform Circular Motion, Dynamics of Uniform Circular Motion, Fictitious				
	Forces, Non-uniform Circ	cular Motion, Numerical.			
Chapter 6	Impulse and Momentun	n		5 hours	
	Momentum and Impuls	se, Problems, Conservation	of Momentum, Inelastic		
	Collisions, Explosion, Mo	mentum in Two Dimension, I	Numericals.		
		UNIT III		I	
Chapter 7	Energy and Work			8 Hours	
	•. •.	and Gravitational Potential			
		ential Energy, Elastic Collisions			
		etic Energy, Force, Work	and Potential energy,		
	Conservation of Energy,	Power, Numericals.			
Text Book:	n M lowett and Davies and	A Convoy Dhysics for CICA at	iste and Engineers with me	doro	
		A Serway, Physics for SISAnti	ists and Engineers with mod	Jern	
pny Reference:	sics,, cengage publication	n, India Edition, 8 th Edition.			
	dall D Knight Physics for	SISAntists and Engineers, Pea	arson nublication 2 nd Edition		
			•		
7 Hai	is Cunanian and ionn i	Markert, Physics for Engine	Pers and SISAntists W/ W/ I	Norron ar	

←BACK TO SEMESTER-II

Progr	ram: UG		Semester: II	
Cours	se Code: 15ECVF102	Course Title: Enginee	ering Mechanics	
L-T-P	T-P-SS: 4-0-0Credits: 4Contact Hrs./Week: 4A Marks: 50ESA Marks: 50Total Marks: 100			
ISA N				
Teach	ning Hrs.: 50	Exam Duration: 3 ho	urs	
		Unit I		
No		Content		Hrs
1	Chapter 1: Overview of Civil Engineering0Evolution of Civil Engineering0Specialization, scope and role.1Impact of Civil Engineering on1National economy, environment and social & cultural fabric.Challenges and Opportunities for Civil EngineersCivil Engineering Marvels, Future challenges, Higher education and Research.			04
2	Chapter 2: Coplanar concurrent force systemIntroduction to Engineering Mechanics:Basic idealizations – Particle, Continuum, Body, Rigid body, Deformable body,Definition of force and its elements; Laws of Mechanics – Parallelogram law of forces,Principle of transmissibility, Law of Superposition, Newton's laws of motion.Classification of force systems3 hrs.Resultant of coplanar concurrent force system: Definitions – Resultant, composition &Resolution of a force, Equilibrium, Equilibrant, Formulae for resultant of forces andresolution of a force. Numerical problems on resultant of forces.4 hrs.Equilibrium of coplanar concurrent force system:Conditions of equilibrium, Action & Reaction, Free body diagram, Lamis' theorem.Numerical problems on equilibrium of forces.S hrs.		12	
3	BChapter 3: Coplanar non-concurrent force systemResultant of a force system: Moment, moment of a force, couple, moment of a couple, Characteristics of couple, Equivalent force-couple system, Numerical problems on moment of forces and couples, on equivalent force-couple system. Varignons principle of moments, Resultant of coplanar- non-concurrent force systems and numerical problems.		05	
		Unit II		
4		types of support and loant connections, Numerical	ading for a statically determinate problems on equilibrium of force nate beam.	18

5	Chapter 5:Static Friction Introduction, types of friction, definition, limiting friction, coeffilSAnt of friction, laws of Coulomb friction, angle of friction and angle of repose, cone of friction. Wedge and belt friction theory. Derivation of belt friction formula. Numerical problems on, impending motion on horizontal and inclined planes (including connected bodies); wedge friction; Ladder friction and Belt friction. 8 hrs.	
6	Chapter 6: Centroid of Plane Figures Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections. 5 hrs.	
	Unit – III	
7	Chapter 7: Second moment of area (Plane figures) Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections. 5 hrs	11
8	Chapter 8: Kinetics of a particle- Work, Power, Energy Introduction – Kinematics and Kinetics, Definitions – work, power and energy. Work done by a force (constant, gravitational and spring forces) in rectilinear motion. Numerical problems, Kinetic energy of a particle, principle of work and energy. 6 hrs.	
Text Bo	ook:	
1. 2.	Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, MGH, New York, 1988. Bhavikatti, S.S., and Rajashekarappa K.G., Engineering Mechanics, 3Ed., New Age Interr Pub. Pvt. Ltd., New Delhi, 2008.	national
3.	Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Company, Nev 2003.	
4.	Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publications, Nev 2006	v Delhi,
Refere	nces:	
1.	Jagadeesh, T.R. and Jayaram, <i>Elements of Civil Engineering</i> , Sapna Book House, Bar 2006.	ngalore,
1. 2.	Ramamrutham, S., <i>Engineering Mechanics</i> , Dhanpat Rai Publishing Co., New Delhi, 1998. Singer, F.L., <i>Engineering Mechanics</i> , 3 rd edition Harper Collins, 1994.	
3.	Timoshenko, S.P. and Young, D.H., Engineering Mechanics, 4 th edition, McGraw Hill Pu Company, New Delhi, 1956.	blishing
4.	4. Irving H Shames, Engineering Mechanics, 3 rd edition, Prentice-Hall of India Pvt. Ltd, New Delhi	

110 001, 1995.

← BACK TO SEMESTER-II

Progra	m: UG		Semester: II		
Course	e Code: 15EMEP101	Course Title: Computer Aide	ed Engineering Drawing		
L-T-P-S	SS: 0-0-3	Credits: 3	Contact Hrs./Wee	ek: 6	
ISA Ma	SA Marks: 80 ESA Marks: 20 Total Marks: 100				
Teaching Hrs.: 50 Exam Duration: 3 hours					
. No		Content		No. of Session	
01	Chapter 01: Introduction to e (Manual Drafting)	ngineering drawing and ortho	graphic projections.	08	
	 i) Introduction to engineering drawing – BIS conventions. ii) Orthographic projections: first angle projection and third angle projection – symbolic representation. iii) Projections of points. iv) Projections of lines inclined to both the planes and determination of true length by rotating the view method (Problems on traces of a line and mid-point problems are not included). However application problems are included. v) Projection of planes: Planes parallel to one plane and perpendicular to other plane or perpendicular to one plane and inclined to other plane (Two stage problems). vi) Projection of simple solids such as prisms, pyramids, cylinders, cones and sphere and their frustums in simple positions (Base parallel to or in one of the three planes). 				
02	 Chapter 02: Development of lateral surfaces of solids. (MANUAL) i) Development of lateral surface of prisms and cylinders (Either full or truncated using parallel line development method) ii) Development of lateral surface of pyramids and cones (Either full or truncated or of their frustums using radial line development method) iii) Development of lateral surfaces of spheres using both the methods and development of transition pieces. 			07	
03	Chapter 03: Conversion of pic software. Drawing orthographic project	ion of objects shown in pictori	al views by first angle	06	
04	Chapter 04: Isometric projection or view using CAD software. Drawing isometric projections or views of objects shown in orthographic projections using CAD software.				
Text Bo 1. 2.	Text Book of Engineering Drav	ving by K R Gopalakrishna ving by N D Bhatt and V M Pan	ichal		

← BACK TO SEMESTER-II

Program:	UG		Seme	ster: II		
Course Co	ode: 18EEEF102	Course Title: Basic Electr	ical Enginee	ring		
L-T-P: 3-0	-0	Credits: 3	Contact Hrs	5.: 3 hrs/w	veek	
CIA Mark	CIA Marks: 50 ESA Marks: 50 Total Marks: 100					
Teaching:40 Hrs Exam Duration: 3 Hrs						
Chapter					Hrs	
No.						
1	Overview of Electrical Engineering Specialization, scope & role, impact of environment, Sources of generation, for electrical engineers, electrical engineers	sustainability, challenges	and opport		02	
2	DC Circuits Voltage and current sources, Kirchoff's analysis of simple circuits with dc excit and RC circuits.	-	•		05	
3	AC Circuits Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters			08		
4		Unit-II			0	
4	Electrical Actuators Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-shunt, series, compound, separately excited, PMDC motors – Speed Control, Stepper Motors, BLDC motors, three phase induction motor, Characteristics and applications, selection of motors for various applications.		9			
5	Power Electronics (Text1, chapter 45) Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The thyristor in practice, The fully controlled AC/DC converter, AC/DC inversion, Switching devices in inverters, Three-phase rectifier networks, The three-phase fully controlled converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion switched-mode power		6			
6	Electrical Wiring, Safety and protection	Unit-III pp/ref :Text2_page 1 to 10)		05	
0	Types of wires and cables for internal of wiring, Safety precautions and rul shock, first aid for electrical shock Methods for earthing, Fuses, MCB, ELC Codes and Standards.	wiring, Types of switches es in handling electrical s, Importance of ground	and Circuits appliances, ding and ea	Electric arthing,	05	
7	Batteries: Basics of lead acid batteries, Lithiur Coulomb efficiency, Numerical of hi Numericals		-		05	
Text Book	S					
1 Hug	hes, Electrical & Electronic Technology, 8	3th , Pearson Education, 20	001			
2 P C :	Sen, Principals of Electrical Machines an	d Power Electronics, 2nd,	Wiley Publica	ations		

3	Gilbert M Masters, Renewable and Efficient Electrical Power systems, John Wiley & Sons 2004		
4	Frank D. Petruzella, Electric Motors and Control Systems, MGH Education, 2009 Edition		
Refe	Reference Books:		
1	D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications		
2	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems,		
	3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005		
•			

3 Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

←<u>BACK TO SEMESTER-II</u>

Program: UG				Semester: II
Course Code: 20EHSP101		e: 20EHSP101	Course Title: Design Thin	king for Social Innovation
L-T-P:	0-1-1		Credits: 2	Contact Hrs.:4 hrs/ week
ESA Marks: 80 Teaching Hrs.: 28		80	ISA Marks: 20	Total Marks: 100
		rs.: 28		Exam Duration: 3 hrs.
Mod	-	Topics	Assignments	Support activities / Tools
KNOWLEDGE, TOOLS & DEVELOPMENT	Course sensitization	 Introduction to Social Innovation: Awakening social consciousness (www.yourstory.com) Social Innovation and Leadership Engineering& Social innovation (EPICS) (Connecting SI Course to Mini Project, Capstone Project, Campus Placements) Course Overview Students' Self Introduction Activity Group formation Activity 	 <u>Reading assignments</u> Read the handout on "The Process of Social Innovation" by Geoff Mulgan Design thinking for Social Innovation Written Assignments Writing about Akshaya Patra in class. (Background information about Akshaya patra and the Social Cuase it is addressing) Brainstorming Session on Social Innovators in Class 	 Class activity on Behavioral Blocks to Innovation Discussion on the behavioural blocks. Introducing oneself with three Adjectives Appreciating diversity and discovering self Group Formation Activity (Forming square) (Making four equilateral triangles out of popsicle sticks to enhance group cohesiveness amongst the group mates)
	Create Mindsets	Seven Mindsets: 1. Empathy (Example of The Boy and the Puppies) 2. Optimism (Person Paralyzed waist down / Glass Halh full Half Empty) 3. Iteration (Thomas Alva Edison) 4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then	 Reading assignments Handout on " Create Mindsets" 	 (How to train the Dragon? Common Video for al the mindsets) Watching in Class TEL Talk on "How to build youir Creative Confidence by David Kelley – IDEO Founder)

KLE Technological University Creating Value, Leveraging Knowledge

	asking the stakeholders at website) (Spending one lakh for the business which is never launched)		
vation	Engage Community study and Issue Identification	 <u>Reading assignments</u> Handout on Community Study and Issue Identification Case Study on "EGramSeva" Case Study on "Janani Agri Serve" <u>Class Presentations</u> Initial observations being made by the group (Literature Survey of Places of Hubli- Dharwad) www.readwhere.com Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge 	 Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective templates with the help of sample case study
Process of Social Innovation	 2. Inspiration Plan for the Research Development of Interview guide Capture your Learnings 	 PEER REVIEW <u>Reading assignments</u> Handout on Overview of Inspiration <u>Class Presentations</u> Entirety of the Social Issue Identification of the Stake Holders (Examples on Fluoroscent Curtain and Students' Punctuality for Class) Interview Questions (Role Play on Interview with Stakeholders) Category wise Learnings capture Use template 2: Plan your Research Template 3. Development of Interview Guide Template 4. Capture your Learning 	• Familiarization of the respective templates with the help of sample case study
	3. Ideation	Reading assignments	• Familiarization of the

•	3.1 Synthesis Search for meaning Create "How might we" question	 Handout on Overview of Ideation-Synthesis <u>Class Presentations</u> Create insights "How might we" questions Use template 5: Create Insights Template 6: Create "How Might We' Questions 	respective templates with the help of sample case study
3.0	D Ideation 3.2 Prototyping Generate Ideas Select Promising Ideas Determine what to prototype Make your prototype Test and get feedback	Reading assignments• Handout on Overview of Ideation-PrototypingClass Presentations• Story board-demonstrating the possible solutionsUse template 7: Select your best ideasTemplate 8 : Determine what to prototypePEER REVIEW	 Brain storming Familiarization of the respective templates with the help of sample case study Activity on Risk management Activity on Resource management Structure building games
	 4.0 Implementation Create an action plan Community Partners (if any) Budgeting & Fundraising Peer to Peer Crowd Funding Giving Kiosks Donation Envelop Funding Marathons/ Walkathons Conducting Yoga Classes ww.causevox.com / ww.blog.fundly.com) Duration Ethical concerns Launch your solution Feedback (Impact) 	 PEER REVIEW <u>Reading assignments</u> Handout on Overview of Implementation <u>Class Presentations</u> Pilot implementation plan with required resources and Budget indicating stake holders & their enagement 	Familiarization of the respective templates with the help of sample case study

5.0 Reflect Reflection of the overall learning by the students	 <u>Reading assignments</u> Handout on Overview of students Reflection Use template 9: Reflection on the Process <u>Class Presentations</u> Final Presentation- After Implementation 	 Familiarization of the respective templates with the help of sample case study
--	--	--

←<u>BACK TO SEMESTER-II</u>

Program	: UG			Semester: II	
Course Code: 16EPHP102		Course Title: Engineeri	Course Title: Engineering Physics lab		
L-T-P-SS:0-0-1		Credits : 1	Contact Hrs	Contact Hrs.: 02 Hrs./Week	
ISA Marks: 80		ESA Marks: 20	Total Marks	s: 100	
Teaching	Hrs.: 24 Hrs.		Examinatio	n Duration: 3 Hrs.	
		Experiments			
1.	Experimental Data Er	Experimental Data Error Analysis			
2.	Coefficient of Friction				
3.	Centripetal Force				
4.	Young's Modulus by Searle's method				
5.	The Law of Forces by three wire suspension table				
6.	Force Table and Vector	or addition of forces			
7.	Moment of inertia and rotational motion				
8.	Projectile motion				
9.	Variable g pendulum				
10.	Study of one dimension motion by linear air track				

Program: Bachelor of Engineering		Semester: III
Course Title: Calculus and Integral	transforms	Course Code:15EMAB231
L-T-P: 4-0-0	Credits:04	Contact Hours: 4 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:50	Examination Duration: 3hrs	

Unit I

1. Differential Calculus

Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable.

2. Integral Calculus

Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems, Approximate integration- Trapezoidal rule, Simpson's 1/3 rule

3. Fourier Series

Fourier series, Evaluation of Fourier coefficients, Waveform symmetries as related to Fourier coefficient, Exponential form of the Fourier series, half range Fourier series. Practical Harmonic Analysis.

Unit II

4. Fourier Transform

Exponential Representation of non-periodic signals, Existence of Fourier transforms properties of Fourier Transform: symmetry, scaling, shifting, Fourier transform of Sine and Cosine Convolution theorem.

5. Laplace Transforms

Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties-Initial and final value theorems and examples; Convolution Theorem. Applications to differential equations.

Unit III

6. Ordinary differential equations of first order

Introduction, order and degree of equation, Solution of first order first-degree differential equations – variable separable methods, Linear differential equations, Bernoulli's equations, Initial value problems.

7. Complex analysis

Function of complex variables. Limits, continuity and differentiability. Analytic functions, C-R equations in Cartesian and polar forms, construction of Analytic functions (Cartesian and polar forms).

Text Books

1.Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001 2.Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi, 2003

Reference Books:

1. Calculus- James Stewart, Early Transcendentals Thomson Books, 5e 2007

Program: Bachelor of Engineering		Semester: III	
Course Title: Statistics and Integra	Il transforms	Course Code:15EMAB201	
L-T-P:4-0-0	Credits:04	Contact Hours:4 hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:50	Examination Duration: 3hrs		
	l Init I	· · · · · · · · · · · · · · · · · · ·	

1. Curve fitting and regression

Introduction to method of least squares, fitting of curves y = a + bx, $y = ab^x$, $y=a + bx + cx^2$, correlation and regression. Applications to civil Engineering problems.

2. Probability

Definition of probability, addition rule, conditional probability, multiplication rule, Baye's rule. (no proof) Discrete and continuous random variables- PDF-CDF- Binomial, Poisson and Normal distributions (Problems only).

3. Tests of hypothesis-1

Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type -I and Type- II errors, Level of significance. Confidence limits, testing of hypothesis for single mean and difference of means (large samples). Applications to civil Engineering problems

Unit II

4. Tests of hypothesis-2

t-test (test for single mean, paired t-test), Chi Squared distribution, analysis of variance (one-way and two-way classifications). Case studies of designs of experiments (CRD, RBD). Applications to civil Engineering problems.

5. Laplace Transforms

Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions.

Inverse Transforms- properties- Initial and Final value theorems, examples, Convolution Theorem. Applications to differential equations.

Unit III

Fourier series representation of a function, Even and odd functions, half range series, Practical Harmonic Analysis.

7. Fourier Transform

6. Fourier Series

Exponential Representation of non-periodic functions, Existence of Fourier transforms properties of Fourier Transform: Fourier Sine and Cosine transforms.

Text Books

1.Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 9ed, Sultan Chand & Sons, New Delhi, 2002

2.J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

3.Kreyszig, E, Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.

Reference Books:

1.Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, PHI, 2000.

2.Miller, Freud and Johnson, Probability and Statistics for Engineering by, 5ed, PHI publications, 2000.3.Potter M C, Jack Goldberg and Aboufadel E F, Advanced Engineering Mathematics, 3ed, Oxford Indian.

Program: Bachelor of Engineering		Semester: III	
Course Title: Manufacturing Pro	cesses	Course Code:15EMEC201	
L-T-P:4-0-0	Credits:4	Contact Hours:4 hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:50	Examination Duration:3 hrs		
	l Init I		

Unit I

1. Introduction to Manufacturing Processes

Definition of manufacturing, Manufacturing sectors and their significance to the economy of a country, Classification of production processes and systems, Criteria for selection of a process for production, Sustainable manufacturing.

2. Casting & special casting processes

Casting: Introduction, Green sand molding, Pattern & core making: Pattern types, allowances and materials, Core & core making methods, Molding methods and machines, Principles of gating, Risers and gating ratio. Special Casting Processes: CO2 molding, Shell molding, Investment casting, Die casting, Centrifugal casting processes and Continuous casting process. Melting Furnaces: Crucible furnaces, Electric arc furnaces, Induction furnaces. Defects in castings, Cleaning and fettling operations, Testing methods.

3. Fabrication Processes

Classification of joining processes, Soldering, Brazing, Mechanical fastening, Welding, Preparation of base metal and joint. Arc welding, Gas welding, TIG, MIG, FCAW, Thermit welding, Spot, seam and projection welding, Ultrasonic welding, Electron beam welding and Laser welding.

Unit II

4. Machine Tool Operations

Principles of metal cutting, Introduction to Lathes, Drilling and Milling machines, Constructional features, Operations, Machining time calculations. Grinding, Super finishing, Honing and Lapping methods; Constructional features, Operations and types.

5. Mechanics of Machining

Geometry of cutting tools, Cutting tool materials, Mechanism of chip formation, Merchant's circle diagram, Velocity and force relationships, Cutting fluids, Thermal aspects of machining, Types of tool wear & wear mechanisms, Tool life, Machinability & its criteria, Numerical on force analysis and tool life.

6. Forming Processes

Bulk deformation processes: Forging, Rolling, Extrusion and Drawing. Sheet metal working processes, Selection of equipment, Numerical on die design.

Unit III

7. Advanced Manufacturing Processes

Non-traditional Machining Processes: Mechanical, Thermal, Electrochemical and Chemical machining processes. Micro-machining and Additive manufacturing.

8. Digital Manufacturing

Introduction to Digital Manufacturing & Design, Digital Thread: Components & Implementation, Advanced Manufacturing Process Analysis, Intelligent Machining, Advanced Manufacturing Enterprise, Cyber Security in Manufacturing, Model-Based Systems Engineering, Roadmap to Industry 4.0.

Text Books

1.Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, Pearson Education, 2014.

2.Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012. **Reference Books:**

1. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.

2.Rosenthal, P., Heine L., Principles of Metal Casting, Tata McGraw Hill, 1997.

3. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.

4. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th edition, Prentice Hall, 2014.

5.Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.

6.Rao P. N., Manufacturing Technology: Volume-1, 3rd edition, Tata McGraw Hill, 2008.

7.Rao P. N., Manufacturing Technology: Volume-2, 3rd edition, Tata McGraw Hill, 2013.

8.Ustundag Alp, and Cevikcan Emre, Industry 4.0: Managing the Digital Transformation, Springer series in Advanced Manufacturing, 2018.

Program: Bachelor of Engineering		Semester: III
Course Title: Engineering Thermo	dynamics	Course Code:15EMEC202
L-T-P:3-0-0	Credits:3	Contact Hours:3 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 hrs	
	l Init I	

1. Introduction

Basic concepts, Zeroth law, 1st law of thermodynamics applied to non flow system and flow system, Thermodynamic processes.

2. Second Law of Thermodynamics

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficient of performance. Classical statements of second law of thermodynamics, PMM I and PMM II, factors that make a process irreversible, reversible heat engine, Carnot cycle, Carnot theorem, thermodynamic temperature scale.

Unit II

3. Entropy

Entropy a property of a system, Clausius theorem and Clausius inequality, Principle of increase of entropy, calculation of entropy change during various processes, Tds relations, Exergy and energy, Exergy analysis.

4. Gas and Vapor Power Cycles

Gas power cycles: Otto, Diesel, Dual and Stirling cycles, expression for mean effective pressure and cycle efficiency, comparison of Otto, Diesel and Dual cycles. Vapor power cycle: Carnot cycle, work done and cycle efficiency, draw backs, ideal and actual Rankine cycle, network done, cycle efficiency and work ratio.

Unit III

5. Reciprocating air compressor

Classification, work done in single stage and multi stage compressor, intercooling, efficiencies of air compressor, condition for minimum work, numerical on single and multistage compressor.

6. Refrigeration

Vapor compression refrigeration system; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP. Refrigerants and their desirable properties: Air cycle refrigeration; reversed Carnot cycle, reversed Brayton cycle. Vapor absorption refrigeration system.

Text Books

1. Michael J Moran & Howard N Shapiro, Fundamentals of engineering thermodynamics, 9th Edition, Wiley Stud, 2018.

2.Yunus A. Cengel, Michael A. Boles, Mehmet Kanoglu, Thermodynamics an Engineering approach, 9th Edition, Tata McGraw, 2019

Reference Books:

1. Jean-Paul Duroudier, Thermodynamics, 1st Edition, ISTE Press - Elsevier, 2016.

2.Yousef Haseli, Entropy Analysis in Thermal Engineering system, 1st Edition, Academic Press, 2019.

Program: Bachelor of Engineering		Semester: III	
Course Title: Mechanics of	Materials	Course Code:15EMEF201	
L-T-P:3-1-0	Credits:4	Contact Hours:5 hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:40	Examination Duration:3 hrs		
	Unit I		

1. Stresses and Strains

Normal and shear stress, bearing stress, strain, deformation, stress-strain diagram, Hooke's law, working stress and factor of safety, analysis of bars of constant and varying sections, principle of super position, Saint-Venant's principle, stresses in composite section, volumetric strain, elastic constants, statically indeterminate structures, thermal stresses.

2. Shear Force and Bending Moment in Beams

Types of beams, supports and loads, shear force and bending moment diagrams for simply supported, overhanging and cantilever beams subjected to point loads, uniformly distributed load, uniformly varying load and couple.

Unit II

3. Stresses in Beams

Bending stress, flexure formula, section modulus, bending stresses in beams of different cross sections, economic sections, shear stresses in beams, shear stress across rectangular, I and T sections.

4. Torsion and Buckling

Torsion of circular shafts, torsional equation, power transmitted by solid and hollow circular shafts. Buckling: Elastic instability, critical load, Euler's equation for columns with different end conditions, Rankine's formula.

5. Compound stresses

State of stress at a point, transformation of plane stress, principal planes and principal stresses, analytical method for determining principal stresses, maximum shear stress and their planes, Mohr's circle for plane stress.

6. Deflection of Beams

Deflection and slope of a beam, differential equation of the elastic curve, equations for deflection, slope and moment, double integration and Macaulay's method, deflection and slope for simply supported, overhanging and cantilever beams subjected to point loads, uniformly distributed load and couple.

7. Thin and Thick Cylinders

Thin walled pressure vessels, cylindrical vessels; hoop stress, longitudinal stress and maximum shear stress, change in dimensions of cylinder (diameter, length and volume), spherical vessels, thick cylinders subjected to internal and external pressures (Lame's equation).

Text Books

Andrew Pytel and JaanKiusalaas, Mechanics of Materials, 2nd Edition, Cengage Learning, 2012.
 R.C. Hibbeler, Mechanics of Materials, 9th Edition, Pearson Education, 2018.

Reference Books:

1.James M. Gere and Barry J. Goodno, Mechanics of Materials, 8th Edition, Nelson Engineering International Edition, 2012.

2.Ferdinand Beer, Jr. E. Russell Johnston, John Dewolf and David Mazurek, Mechanics of Materials, 7th Edition, McGraw-Hill Education, 2014.

Unit III

Program: Bachelor of Engineering		Semester: III
Course Title: Control Systems		Course Code:19EMEC201
L-T-P:2-1-0	Credits:3	Contact Hours:4 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:30	Examination Duration:3 hrs	
	الغثمال	

Unit I

1. Introduction to Control System

Generalized configurations and functional description of control systems. Control system design. Examples of Control System. Introduction to Linear, Nonlinear, Time Variant and Time Invariant systems. **2. Modeling of Physical Systems:**

Introduction, Differential equations of physical systems, The Laplace Transform, Order of system; The transfer function of linear and rotational Mechanical systems, Gear Train, Electrical systems, Electromechanical System, Thermal systems, Hydraulic System; Block representation of system elements and Reduction of block diagrams.

Unit II

3. System Response

Introduction, Poles, Zeros, and System Response. First-order system response to step, ramp and impulse inputs. Second-order system response to step input; Un-damped, Under damped, Critical damped and Over damped systems, Time response specifications. Design of 1st and 2nd order system.

4. System Stability

Introduction to stability. Stability analysis by time response, S-plane and Routh-Hurwitz Criterion. Effect of gain adjustment, addition of pole and addition of zero on system response and system stability. Defining the Root locus, General rules for constructing root loci, Sketching the Root locus.

Unit III

5. Frequency Domain Analysis

Nyquist stability criteria, Bode Plots. Stability analysis using bode plots.

6. Control Action

Introduction to PID controller design. Types of Controllers, Mathematical modeling of PID, ON-OFF controller, Effect of Proportional, Derivative and Integral elements on system behavior, Design of Controller for given simple applications. Controller Design using root locus.

Text Books

1.Richard C Dorf and Robert H. Bishop, Modern Control Systems, 12th edition, Addison Wesley 2.A. Anandkumar, Control Systems, 2nd edition, PHI Learning Private Limited, 2014.

Reference Books:

1.Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson Publications.

2.Norman S. Nise, Control. Systems, 6th edition, John Wiley & Sons

Program: Bachelor of Engineering		Semester: III	
Course Title: Manufacturing Processes Lab		Course Code:16EMEP201	
L-T-P:0-0-1	Credits:1	Contact Hours:2 hrs/week	
ISA Marks:80	ESA Marks:20	Total Marks:100	
Teaching Hours:26	Examination Duration:2 hrs		
	Content	· · · · · · · · · · · · · · · · · · ·	
	Lah Exercises		

Lab Exercises

1. Machining practices involving machining time calculation and estimation of machining cost for the jobs for turning, taper turning, threading, knurling.

To manufacture and assemble parts for ball valve which involves turning, milling, tapping/slot milling, etc.

3. Design, Modeling and Analysis of Bulk deformation and Sheet Metal forming processes.

4. Demonstration of CNC machines and Non-traditional machines such as laser cutting, plasma cutting, electro-discharge machine.

Text Books

1.Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, Pearson Education, 2014.

2. Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012.

Reference Books:

1. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.

2.Rosenthal, P., Heine L., Principles of Metal Casting, Tata McGraw Hill, 1997.

3. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.

4.Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th edition, Prentice Hall, 2014.

5.Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.

Program: Bachelor of Engine	eering	Semester: III
Course Title: Control Systems Lab		Course Code:19EMEP201
L-T-P:0-0-2	Credits:2	Contact Hours: 4 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:48	Examination Duration:2	hrs
	Experiments	
1.Scaffolding exercises to exp	olore MATLAB / Simulink softwar	e package.
2. Modelling of physical syste	ms and its response analysis.	
3. Design and investigate the	effects of various controllers on	a system.
4. Comparative study of Time	e response, root locus and Bode	plot with respect to stability.
5. Control system analysis: Ca	ase Studies	
Hydraulic Lift		
DC servo motor		
6. Case Study (Open Ended)		
Text Books		
1.Richard C Dorf and Robert	H. Bishop, Modern Control Syste	ms, 12th edition, Addison Wesley
2.A. Anandkumar, Control Sy	stems, 2nd edition, PHI Learning	Private Limited, 2014.
Reference Books:		
1.Katsuhiko Ogata, Modern (Control Engineering, 5th edition,	Pearson Publications.
2.Norman S. Nise, Control. Sy	ystems, 6th edition, John Wiley 8	& Sons.
3.Data sheets provided by m	c .	

Program: Bachelor of Engineering		Semester: III
Course Title: Machine Drawing Lab		Course Code:18EMEP203
L-T-P:0-0-1	Credits:1	Contact Hours:2 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:26	Examination Duration:2	hrs
	Laboratory Conter	nt
1.Sectional views		
Sectional views of machine pai	rts involving half section, full s	ection, offset section, revolved section and
local section (use 1 st and 3 rd an	gle of projection).	
2.Threaded Fasteners	0 I J/.	
Drawing of bolts, nuts, screws	and their conventional repres	entation.
3.Part and Assembly Drawing		
Drawing of part and assembly	drawing of machines such as:	
(1) Screw Jack. (2) Protected type flanged coupling. (3) Pipe vice. (4) Clapper box. (5) Non-		
return valve. (6) Universal cou	pling. (7) Pin and cotter joints	i.
4.Assembly Drawing using CAI	D tool	
Assembly drawing of machines	such as:	
(1) Screw Jack. (2) Protected	type flanged coupling. (3) Pip	e vice. (4) Clapper box. (5) Non-returr
valve. (6) Universal coupling.	(7) Pin and cotter joints.	
Text Books		
1. Machine Drawing by K. R. Go	palakrishna, Subhas Publicatio	ons, 22 nd Edition - 2013.
2. Machine Drawing by N. D. Bh	at & V. M. Panchal, Charotar P	Publishing House.
3.A Text Book of Computer Aid	ed Machine Drawing, S. Trymb	oaka Murthy, CBS Publishers, New Delhi,
2007 Edition.		
Reference Books:		
1.Engineering drawing practice	for cohools and collages CD 11	

Program: Bachelor of Engineering		Semester: IV
Course Title: Vector Calculus and Differential equations		Course Code:15EMAB241
L-T-P:4-0-0	Credits:4	Contact Hours:4 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:50 Examination Duration:3hrs		
	Unit I	·

1. Vector Algebra

Vectors, Vector addition, multiplication (Dot and Cross products), Triple products, Vector functions, Vector differentiation, Velocity and Acceleration of a vector point function.

2 Partial differentiation

Function of several variables, Partial derivatives, Chain rule, Errors and approximations.

3 Multiple integrals

Double integral, Evaluation by change of order, change of variables, simple problems, Triple integrals, simple problems.

Unit II

4 Vector Calculus

Vector fields, Gradient and directional derivatives, Line and Surface integrals. Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem.

5 Differential equations of second order

Differential equations of second and higher orders with constant coefficients, method of variation of parameters.

Unit III

6 Partial differential equations

(a) Introduction, classification of PDE, Formation of PDE, Solution of equation of the type Pp + Qq = R, Solution of partial differential equation by direct integration methods, method of separation of variables.

(b) Modeling: Vibration of one-dimensional string-wave equation and heat equation. Laplace equation. Solution by separation of variables method

Text Books

1.Grewal B S, Higher Engineering Mathematics, 38 ed, Khanna Publication, New Delhi, 2001 2.Bali and Iyengar, A text book of Engineering Mathematics, 6 ed, Laxmi Publications(p) Ltd, New Delhi, 2003

Reference Books:

1.Early Transcendentals Calculus- James Stewart, Thomson Books, 5 ed, 2007

Program: Bachelor of Engineering		Semester: IV
Course Title: Numerical methods and Partial differential equations		Course Code:19EMAB206
L-T-P:3-1-0 Credits:4		Contact Hours:5 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration: 3hrs	
	Unit I	

1. Interpolation techniques

Finite differences, Forward, Backward and central difference operators. Newton Gregory forward and backward interpolation formulae. Sterling's and Bessel's formulae for central difference, Newton's divided difference formula for un equal intervals. Heat transfer problem, gas law problem-shear stress problem-using interpolation.

Python: Interpolation problems related to Mechanical engineering

2. Matrices and System of linear equations

Introduction to system of linear equations, Rank of a matrix by elementary row transformations. Consistency of system of linear equations, solution of system by Direct methods - Gauss elimination, Gauss Jordon method. Solution of homogenous system AX=0, Eigenvalues and Eigenvectors of a matrix. Python: Matrices, system of linear equations by Gauss elimination, Gauss Jordon and eigenvalue problems

Unit II

3. Numerical solution of linear equations

Solution of system of equations by Iterative methods- Guass-Seidal method. Largest Eigenvalue and the corresponding Eigenvector by power method. Spring mass system Falling parachutist using system of equations.

Python: Application problems on mechanical engineering

4. Partial differential equations

Introduction, classification of PDE, Formation of PDE, Solution of equation of the type Pp + Qq = R, Solution of partial differential equation by direct integration methods, method of separation of variables. Modeling: Vibration of one-dimensional string-wave equation and heat equation. Laplace equation. Solution by method of separation of variables.

Python: Solution of Partial differential equations

Unit III

5. Finite difference method.

(a)Finite difference approximations to derivatives, finite difference solution of parabolic PDE explicit and Crank-Nicholson implicit methods. Engineering Problems: Temperature distribution in a heated plate (b)Hyperbolic PDE-explicit method, Elliptic PDE-initial-boundary value problems. Vibration of a stretched string, steady-state heat flow.

Python: Finite difference solution of Partial differential equations.

Text Books

1.Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.

2.Potter M C, Jack Goldberg and Aboufadel E F, Advanced Engineering Mathematics, 3ed, Oxford Indian Edition, 2005.

3. Grewal B S, Higher Engineering Mathematics, 38ed, TATA McGraw-Hill, 2001.

Program: Bachelor of Engineering		Semester: IV
Course Title: Fundamentals of M	achine Design	Course Code:15EMEC203
L-T-P:3-1-0	Credits:4	Contact Hours:5 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:03	
· · · · ·		

Unit I

1. Introduction to Machine Design

Machine Design, Basic Procedure of Machine Design, Design of Machine elements, Traditional design methods, Design synthesis, Use of Standards in Design, Selection of prepared sizes, Aesthetic considerations in design, Ergonomic considerations in design, Concurrent Engineering.

2. Design against Static Load

Modes of failure, factor of safety, eccentric axial loading, design of machine parts, Stress Concentration, Stress Concentration Factors, Reduction of Stress Concentration. Theories of Elastic failure, Maximum Principal Stress Theory, Maximum Shear Stress Theory, Distortion-Energy Theory, Selection and use of failure Theories.

3. Design against Reversing load

Fluctuating Stresses, Fatigue Failure, Endurance Limit, Low cycle, and High Cycle Fatigue, Notch Sensitivity, Endurance Limit- Approximate Estimation, Reversed Stresses-Design for Finite and Infinite Life.

Unit II

4. Design against Fluctuating load

Cumulative Damage in Fatigue, Soderberg and Goodman equations. Fatigue design under combined stresses. Impact Stresses.

5. Design of Belt Drives

Introduction to Belt drives, Materials for Belts, Advantages, and disadvantages of V belts over flat belt drives, Dimensions of standard V grooved pulley, Power transmission, Number of belts, Centre distance, Pitch length of the belt, Ratio of driving tensions, Design procedure of V belts.

6. Shafts and Keys

Transmission Shafts, Shaft Design on Strength Basis, Shaft Design on Torsional rigidity Basis, ASME Code for shaft design, Design of Shafts subjected to combined bending and twisting. Keys, Saddle and Sunk keys, Design of square and flat Key.

Unit III

7. Temporary Joints

Bolted joint –simple analysis, eccentric load perpendicular to the axis of the bolt, eccentric load parallel to the axis of bolt.

8. Permanent Joints

Welded Joints, Strength of Butt Welds, Strength of Parallel fillet Welds, Strength of Transverse Fillet Welds, Eccentric Loaded welded joints, Riveted Joints, Types of riveted joints, Types of failures, Design of butt and lap joints for Boilers.

Text Books

V.B. Bhandari, Design of Machine Elements, Fourth Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2017.

Reference Books:

1.T. Krishna Rao, Design of Machine Elements (Volume I), Second Edition, I K International Publishing House Pvt. Ltd., New Delhi, 2015.

2.Farazdak Haideri, Mechanical Engineering Design (Volume I), Second Edition, Nirali Prakashan, Pune, 2012.

3.K. Mahadevan and Balaveera Reddy, Design Data Hand Book, CBS Publication, Fourth Edition. 2016.

Program: Bachelor of Engineering		Semester: IV
Course Title: Machines & Mechanisms		Course Code:15EMEC204
L-T-P:4-0-0	Credits:4	Contact Hours:4 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:50 Examination Duration:3 hrs.		
	Linit I	

Unit I

1. Kinematics Fundamentals

Links, pairs, mechanisms, machines, structure, and inversions. Identifying types of links, pairs, drawing kinematic diagram and finding mobility of linkages. Inversions of four bar mechanism, single slider crank mechanism, and double slider crank mechanism. Steering gear mechanisms, Intermediate motion mechanisms, Hook's joint analysis with examples.

2. Kinematic Analysis of Mechanisms

Locating instantaneous centers for simple mechanisms. Velocity and Acceleration of four bar mechanisms, slider crank mechanisms by relative velocity method. Velocity and acceleration analysis of four bar mechanism and slider crank mechanism by complex algebra method. Numericals.

Unit II

3. Static and Dynamic analysis of Mechanisms

Static force analysis of four bar mechanisms, slider cranks mechanisms. Inertia forces and torque, inertia forces on engine mechanism, TMD for different machines. Fluctuation of energy, design of flywheel. Numericals.

4. Kinematic analysis of Gear and Gear Trains

Classification and terminology of gears, Involutometry, backlash in gears, Law of gearing, velocity of siding, length of path of contact, arc of contact, contact ratio, Numericals. Different types of gear trains, Numericals on Epicyclic gear train.

5. Balancing of masses

Necessity of balancing, Static and Dynamic balancing, Balancing of revolving masses in single and multiple planes. Balancing of reciprocating masses, Balancing of multi cylinder inline engine. Numericals.

Unit III

6. Cams

Introduction, classification of followers and cams. Construction of Displacement diagrams, velocity and acceleration diagrams with designing the cam profile for disc cam and roller follower combination for the following cases: Simple Harmonic Motion (SHM), Uniform Acceleration and Retardation, Numericals.

7. Gyroscope

Gyroscopic couple and precessional motion, effect of gyroscopic couple on airplane and ship during steering and rolling. Stability of two wheels and four-wheel drives taking turn. Numericals.

Text Books

1.R. L. Norton, Kinematics and Dynamics of Machinery, 2nded, Tata McGraw Hill, New Delhi.

2.David Myszka, Machines and Mechanisms- Applied Kinematic Analysis, 3rded, PHI, New Delhi.

Reference Books:

1. John Uicker , Gordon Pennock , Joseph Shigley, Theory of Machines and Mechanisms, 4thed, Oxford University Press-NEW DELHI.

2.S. S. Rattan, Theory of Machines, 2nded, Tata McGraw Hill Publishing Company Ltd., New Delhi.

Program: Bachelor of Engineering		Semester: IV
Course Title: Engineering Materials		Course Code:15EMEF202
L-T-P:4-0-0	Credits:4	Contact Hours:4hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:50	Examination Duration: 3hrs	

Unit I

Chapter 1: Introduction:

An overview of materials science and engineering, classes of engineering materials, functional and advanced materials, Materials history and character, Design-limiting properties, Material property charts, Matching materials to design, Selection strategy- translation, screening, ranking and documentation.

Chapter 2: Structures of Metals and ceramics:

Macro-Micro-Nano: The scale of structures, Crystal Structures- BCC, FCC, HCP structures; coordination number, atomic packing factor, Imperfections in solids and their roles in affecting the behavior of materials., Plastic deformation of single crystal by slip and twinning, dislocation theory; Introduction to microstructural characterization- optical microscopy, scanning electron microscopy and transmission electron microscopy.

Chapter 3: Mechanical Behavior of materials:

Stress-strain diagrams to show ductile and brittle behavior of materials, linear and non linear elastic behavior of materials, mechanical properties in elastic and plastic range, Effect of strain rate and temperature on tensile properties, Fatigue: Types of fatigue loading with example, mechanism of fatigue, fatigue properties, fatigue testing and SN diagram; Creep: Description of phenomenon with examples, stages of creep, creep properties, stress relaxation; Fracture: Failure of engineering materials.

Unit II

Chapter 4: Solidification and phase diagrams:

Mechanism of solidification, Homogeneous and heterogeneous nucleation, crystal growth, cast metal structures, Solid solutions, Hume Rothery rules, substitutional and interstitial solid solutions, intermediate phases, Gibbs phase rule, construction of equilibrium diagrams, equilibrium diagrams involving complete and partial solubility, lever rule, Iron carbon equilibrium diagram, description of phases, solidification of steels and cast irons, invariant reactions, Numericals.

Chapter 5: Ferrous and Nonferrous materials:

Properties, composition and uses of cast irons and steels, AISI and BIS designation of steels. Aluminum, Magnesium and Titanium alloys; Exotic alloys.

Chapter 6: Heat treatment of metals:

Objectives, Annealing and its types, normalizing, hardening, tempering, austempering, martempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening; Age hardening of Aluminum -Copper alloys. Time-temperature-transformation (TTT) curves, continuous cooling curves.

Unit III

Chapter 7: Ceramic and Polymer Materials:

An overview of ceramic materials, mechanical and thermal properties of ceramics, An overview of polymeric materials, thermoplastics and thermosets, elastomers, engineering applications of ceramic and polymer materials.

Chapter 8: Advanced materials:

The need for advanced materials; Composite materials- classification, types of matrix materials and reinforcements, fundamentals of production of FRP's and MMC's, applications of composites, Smart materials, Nano materials, FGM(Functionally graded materials) and Hybrid composites.

Text Books

1.William Callister, Materials Science and Engineering, John Wiley & Sons. Inc., 10th Edition, January 2018 (ISBN: 978-1-119-40549-8).

2.Michael Ashby and D R H Jones, Engineering Materials: An Introduction to Properties, Applications and Design- 5th Edition, Butterworth-Heinemann, December 2018.

Reference Books:

1.Donald Askeland and Pradeep Phule, The Science and Engineering of Materials Thompson Learning, 7th Edition, CENGAGE Learning, 2019.

2.George Murray, Charles V. White, Wolfgang Weise, Introduction to Engineering Materials, 2nd Edition, CRC Press, 07-Sep-2007

Program: Bachelor of Engineering		Semester: IV
Course Title: Mechatronics		Course Code:19EMEC202
L-T-P:2-0-0	Credits:2	Contact Hours:2 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:30 Examination Duration:3 hrs		

Unit I

1. Introduction to Mechatronics:

Definition & overview of Mechatronics, Key elements, Types of Simulation, Mechatronics system Design approach, examples of mechatronic systems.

2. Signal conditioning:

Introduction, Amplification, Filtering, Isolation and Protection, Linearization, Multiplexing, ADC and DAC Process; Data Acquisition System (DAQ), AC/DC Bridges, Modulation and Demodulation.

3. Computational systems:

Analog and Digital circuits for Computational system realization, Memory Hierarchy, Typical working of a Digital Computational system, Fundamentals of Micro-controller/ Microprocessor and FPGA: Timer, Counter, interrupts; Different Architectures.

Unit II

4. Sensor and Actuators:

Introduction, Characteristics and selection of Sensors: Displacement, Position, Velocity, Acceleration, proximity, Temperature, Liquid Level, Light intensity, Force, Torque, Power, Pressure and Flow rate measurement.

Characteristics and selection of Actuators: Relay, Solenoid, DC motor, Stepper motor, AC and DC Servo motor, Drive Circuits

5. User Interface and communication system:

Introduction, touch screen, Keypad, buttons, mouse, joystick; 7-segment Display, CRT/LED/TFT/ Plasma Displays; Data transmission medium; Basics of serial Communication, Basics of network topologies; Communication protocols.

Text Books

1.W. Bolton, "Mechatronics", 2nd edition, Pearson Ed, 2001

2.Sabri Cetinkunt "Mechatronics with Experiments", 2nd edition, John Wiley & Sons Ltd, 2015

3.Petruzella D Frank, "Programming Logic Controllers", 3rd edition, Mc Graw Hill Education, 2010

Reference Books:

1. Devdas Shetty, Richard Kolk, "Mechatronics System Design", 2nd edition,

2.Robert H. Bishop, "MECHATRONICS an Introduction", 1st edition, Taylor & F, 2006.

Program: Bachelor of Engineering		Semester: IV
Course Title: Manufacturing Processes - II Lab		Course Code:18EMEP201
L-T-P:0-0-2 Credits:2		Contact Hours:4 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:48 Examination Duration:2 hrs		
Content		

Processing of plastics & rubber goods:

Production of sheet and film, fiber and filament production, injection molding, blow molding & rotational molding, thermoforming, casting, product design considerations

Rubber processing & shaping, manufacture of tires & other rubber products, product design considerations

Design of jigs/fixtures:

Difference between jigs and fixtures, General consideration in design of drill jigs, Drill bushing Basics of Geometrical Dimensioning and Tolerancing (GD&T)

Types of geometric tolerances, characteristics, symbols, examples

Lab Exercises

1.Injection moulding: Produce a component in injection moulding process for given component drawing.

2. FRP: Prepare a component by hand layup process for FRP product.

3. Rubber processing: Conduct the rubber manufacturing processes for given component drawing.

4. Non-conventional machining: Study the effect of process parameters in electric-discharge machining, laser cutting and plasma arc machining for a given geometry.

5. RPT (3D printing): Build a product in 3D printing machine for given component drawing.

6.CNC machining: Prepare CNC program and conduct turning & milling machining for a given component.

7.Jigs/Fixtures: Design a jig/fixture for given application.

Text Books

1.Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, Pearson Education, 2014.

2.Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012.

Reference Books:

1.Tadmor Zehev, Gogos Costas G., Principles of Polymer Processing, 2nd edition, A John Wiley & Sons, Inc., Publication, 2006.

2.Chee Kai Chua, Kah Fai Leong, Chu Sing Lim, Rapid Prototyping: Principles and Applications, 3rd edition, World Scientific Pub Co Inc, 2010.

3.Rahaman M. N., Ceramic Processing, 2nd edition, CRC Press, 2003.

←<u>BACK TO SEMESTER-IV</u>

Program: Bachelor of Engineering		Semester: IV
Course Title: Machines & Mechanisms Lab		Course Code:15EMEP204
L-T-P:0-0-1	Credits:1	Contact Hours:2 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:24	Examination Duration:2	hrs
	Experiments	
1.Introduction to software an	d exercises	
2.Determination of the Mobil	ity of linkages	
3. Velocity and Acceleration a	nalysis on applications of slider of	crank mechanisms
4. Velocity and Acceleration a	nalysis on applications of 4 bar r	nechanisms
5. Kinematic analysis of a Epic	cyclic Gear Train	
6. Determination of gyroscop	ic couple and verification of gyro	scopic law
7. Balancing of a system of rotating masses in a single plane		
8. Balancing of a system of ro	tating masses in a Multiple plane	2
9. Kinematic analysis of a carr	follower pair for specific inputs	
10. Construction of the best suited mechanism and analysis of the mechanism using traditional and/or		
modern tools for a specific ap	plication	-
Text Books		
David Myszka, Machines and Mechanisms- Applied Kinematic Analysis, 3 rd Edition, PHI, New Delhi,		
Reference Books:		
1.John Uicker, Gordon Pennock, Joseph Shigley, Theory of Machines and Mechanisms, 4 th		
2.Edition, Oxford University P		
3.A brief introduction to MSC.ADAMS-user manual, McNeil Schindler Corp (MSC), USA.		
4 "Make it Kit" An educational Mechanism construction kit		

4."Make it Kit", An educational Mechanism construction kit.

Program: Bachelor of Engineering		Semester: IV
Course Title: Engineering Materials Lab		Course Code:15EMEP202
L-T-P:0-0-1 Credits:1		Contact Hours:2 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:24 Examination Duration:2 hrs		
Brief description about the experiment		

1. Introduction to the Laboratory-Overview of Destructive and Non-Destructive Testing methods. (Awareness about the ASM hand books and ASTM standards)

2. Non-destructive test experiments

- a. Ultrasonic flaw detection.
- b. Magnetic particle inspection.
- c. Dye penetration testing,

To study the defects of castings and welded specimens.

3. Evaluation of the tensile strength, Compression strength, Shear strength, Bending/ Torsion strength and Impact strength.

4.Ex: Should be able to Describe the differences between the tensile behavior of the metal sample and that of polymer sample, considering that the student performs the test on two different materials family.

5.To study wear characteristics of ferrous, non-ferrous and composite materials for different loading. Computation of wear parameters: wear rate, wear resistance, specific wear rate, frictional force, coefficient of friction, wear coefficient.

6.To study the microstructure of the ferrous and nonferrous alloy and to perform grain size analysis and volume fraction analysis.

- Familiarization with the procedure for preparation of a material specimen for microscopic examination.
- Familiarization with compound optical microscopes and metallography.
- Examination of surface characteristics of engineering materials.

Grain size determination of metals and analysis.

7. To analyze given SEM Micrographs (Microstructure and fracture surface morphology) and conclude on the structure and mode of fracture.

(Familiarization with the advanced characterization of metals by Scanning electron microscopy).

8. Computer Modeling of Stress Concentration, Crack Opening and Crack Propagation

Understand the occurrence of stress concentration at geometrical discontinuities.

Determine the stress concentration factor at a geometrical discontinuity.

9. Design an experiment to investigate the spring characteristics of any given spring.

10. Synthesize a novel composite material which is reinforced with a natural fiber in a polymer matrix and perform the mechanical characterization for investigation of mechanical properties, which is desirable for specified engineering applications.

Perform a parametric analysis which affects the mechanical properties of prepared composites using a statistical approach and find the correlation of those parameters with properties of composites.

Text Books

Reference Books:

Program: Bachelor of Engineering		Semester: IV
Course Title: Mechatronics Lab		Course Code:19EMEP202
L-T-P:0-0-2	Credits:2	Contact Hours:4 hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:48	Examination Duration:2 hrs	
	Experiments	
1.a.Design appropriate Signal condi	tioning for given sensor to be inter	faced with controller.
b. To study the frequency response	of Active and Passive Low Pass Filt	er
c. Experimentally acquire the strain	and Present result using Industry	Standard Graphical Programming
Software and its associated hardwa		
2.a. Measurement of physical Vari	ables (eg. temperature, displacen	nent) and displaying the data on
serial monitor.		
b. Read Sensor data and display the		
3.Simulate 2-bit Registers, Counters and Arithmetic and Logical Unit (ALU)which are basic blocks of CPU.		
4. Development of Application using Model Based Design and implementation by interfacing Target		
Hardware (Arduino and Raspberry Pi) with Industry Standard Software.		
5.a. Simulate basic programming concepts using PLC software.		
b. Building applications using PLC Hardware		
Text Books		
1.Tilak Thakur, Mechatronics, 1 st edition, Oxford Higher Education, 2016.		
2.Petruzella D Frank, "Programming Logic Controllers", 3rd edition, Mc Graw Hill Education, 2010		
Reference Books:		
1.W. Bolton, "Mechatronics", 2nd edition, Pearson Ed, 2001		
Manuals		
Mechatronics Lab Manual prepared by Lab-incharge.		
Others		

Relevant Manuals and data sheets of different device/equipment manufacturers

Program: Bachelor of Engineering		Semester: V
Course Title: Numerical Methods and Statistics		Course Code:19EMAB301
L-T-P:3-0-1	Credits:4	Contact Hours:6Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40 Examination Duration:3 Hrs		
11		

Unit I

1.Numerical Methods 8 hrs

Introduction to numerical methods. Roots of equations using Bisection Method, Newton- Raphson Method, Finite differences, Forward, Backward Operators. Newton Gregory forward and backward interpolation formulae. Newton's divided difference formula for un equal intervals. Numerical solution of first order ODE, Euler's and Modified Euler's method, RungeKutta 4th order method. Implementation using python-programming

2. Matrices and System of linear equations 8 hrs

Introduction to system of linear equations, Rank of a matrix by elementary row transformations. Consistency of system of linear equation solution of system by (i) Direct methods-Gauss elimination, Gauss Jordon method (ii) Iterative methods- Guass-Seidal method. Eigenvalues and Eigenvectors of a matrix. Largest Eigenvalue and the corresponding Eigenvector by power method. Implementation using python-programming.

Unit II

1.Curve fitting and regression 5 hrs

Introduction to method of least squares, fitting of curves y = a + bx, $y = ab^x$, $y=a + bx + cx^2$, correlation and regression.

2.Probability 9 hrs

Definition of probability, addition rule, conditional probability, multiplication rule, Baye's rule. (no proof) Discrete and continuous random variables- PDF-CDF- Binomial, Poisson and Normal distributions (Problems only).

Unit III

1.Sampling distributions 10 hrs

(a) Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type-I and Type-II errors, Level of significance. Confidence limits for means (large sample).

(b) Testing of hypothesis for means. large and small samples and student's t- distribution

and Confidence limits for means (small sample).

Text Books

1.Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

2. Chapra S C and Canale R P, Numerical methods for Engineers, 5ed, TATA McGraw-Hill, 2007

3.Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 9ed, Sultan Chand & Sons, New Delhi, 2002

Reference Books:

1.Sastry S S, Introductory method for numerical analysis, 3ed, PHI, 2003.

2.J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

Program: Bachelor of Engineering		Semester: V
Course Title: Fluid Mechanics and Hydraulic Machines		Course Code:15EMEC301
L-T-P:4-0-0	Credits:4	Contact Hours:4 Hrs/week
ISA Marks:50 ESA Marks:50		Total Marks:100
Teaching Hours:50 Examination Duration:3 Hrs		
	l Init I	

Unit I

1.Basic Concepts and Fluid properties 6 Hrs

Introduction, Application Areas of Fluid Mechanics, The No-Slip Condition, Classification of Fluid Flows, System and Control Volume, Properties of fluids, Energy and Specific Heats, Viscosity, Surface Tension and Capillary Effect.

Fluid statics: Pressure and its measurements, Hydrostatic forces on surfaces.

2.Fluid Kinematics 6 Hrs

Lagrangian and Eulerian Descriptions, Fundamentals of Flow Visualization, Streamlines and Stream tubes, Path lines, Streak lines, Timelines, Continuity equation, Velocity and acceleration of fluid flow, Velocity potential function and stream function

3. Mass, Bernoulli and Energy Equations 8 Hrs

Mass and Volume Flow Rates, Conservation of Mass Principle, Moving or Deforming Control Volumes, Mass Balance for Steady-Flow Processes, Mechanical Energy and Efficiency, Euler's equation of motion along a streamline, Bernoulli's equation, Navier-Stokes equation of motion, The momentum equation, General Energy Equation, Energy Analysis of Steady Flows.

Unit II

4. Flow in Pipes 6 Hrs

Laminar and Turbulent Flows, Reynolds Number, Boundary Layer, Laminar Flow in Pipes, Pressure Drop and Head Loss, Inclined Pipes, Turbulent Flow in Pipes, Major and Minor Losses, Flow Rate and Velocity Measurement.

5. Dimensional analysis 6 Hrs

Dimensions and Units, Dimensional Homogeneity, Non-dimensionalization of Equations, Dimensional Analysis and Similarity, Rayleigh's method and the Buckingham Pi Theorem, Dimensionless numbers.

6. Flow over Bodies 8 Hrs

Drag and Lift, Friction and Pressure Drag, Reducing Drag by Streamlining, Flow Separation, Drag Coefficients of Common Geometries, Drag Coefficients of Vehicles, Parallel Flow over Flat Plates, Friction Coefficient, Flow over Cylinders and Spheres, Lift, End Effects of Wing Tips, Lift Generated by Spinning

7. Hydraulic Pumps 5 Hrs

Centrifugal pumps – Work done, Heads and efficiencies, Priming, specific speed, NPSH, Cavitation, Multistage centrifugal pumps.

Unit III

Reciprocating pumps: Working principle, discharge, work done and power, slip, Air vessels.

8. Hydraulic Turbines 5 Hrs

Classification, Heads and efficiencies of turbines, Pelton, Francis and Kaplan turbines, Velocity triangles and work done, specific speed, Unit quantities, Draft tube, Characteristic curves.

Text Books

Yunus A Cengel, John. M Cimbala: Fluid Mechanics – Fundamentals and Applications 2nd Edition, Mac Graw Hill Publications, 2017

Reference Books:

1.White F M: Fluid Mechanics, 8thEdn, McGraw Hill International Publication, 2015.

2.R.K. Bansal: Fluid Mechanics and Hydraulic Machines, 10thEdn, Laxmi Publications, 2018

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V	
Course Title: Design of Machine Elements		Course Code:15EMEC304	
L-T-P:3-1-0	Credits:4	Contact Hours:5 Hrs/week	
ISA Marks:50 ESA Marks:50		Total Marks:100	
Teaching Hours:50 Examination Duration:3 Hrs			
l lait l			

Unit I

Chapter 1: Spur Gears 8 Hrs

Mechanical Drives, Gear Drives, Classification of Gears, Selection of Type of Gears, Terminology of Spur Gear, Standard Systems of Gear Tooth, Force Analysis, Gear Tooth Failures, Selection of Material, Number of Teeth, Face Width, Beam Strength of Gear Tooth, Permissible Bending Stress, Effective Load on Gear Tooth, Estimation of Module Based on Beam Strength, Wear Strength of Gear Tooth, Estimation of Module Based on Wear Strength

Chapter 2: Helical and Bevel Gears 7 Hrs

Helical Gears, Terminology of Helical Gears, Virtual Number of Teeth, Tooth Proportions, Force Analysis, Beam Strength of Helical Gears, Effective Load on Gear Tooth, Wear Strength of Helical Gears. Bevel Gears, Terminology of Bevel Gears, Force Analysis, Beam Strength of Bevel Gears, Wear Strength of Bevel Gears, Effective Load on Gear Tooth.

Unit II

Chapter 3: Springs 8 Hrs

Types of springs, Terminology of Helical spring, styles of end, stress and deflection equations, series and parallel connections, spring materials, Design of helical springs, spring design –trial and error method, design against fluctuating load, optimum design of helical spring, surge in spring, multi-leaf springs, nipping of leaf springs.

Chapter 4: Friction Clutches and Brakes 7 Hrs

Clutches, Torque Transmitting Capacity, Multi-disk Clutches, Friction Materials, Breaks, Block Brake with short shoe and Band Brakes.

Unit III

Chapter 5: Rolling Contact Bearings 5 Hrs

Bearings, Types of Rolling Contact Bearings, Selection of Bearing Type, Static Load Carrying Capacity, Dynamic Load Carrying Capacity, Equivalent Bearing Load, Load-Life Relationship, Selection of Bearing Life, Load Factor, Selection of Bearing From Manufacturer's Catalogue, Bearing failure – Causes and Remedies.

Chapter 6: Sliding Contact Bearings 5 Hrs

Basic Modes of Lubrication, Viscosity, Measurement of Viscosity, Viscosity Index, Petroff's Equation, Mckee's Investigation, Bearing Design- Selection of Parameters, Comparison of Rolling and sliding Contact Bearings, Bearing failure – Causes and Remedies.

Text Books

1.Machine Design, An Integrated Approach, Robert L. Norton, Pearson Education, 2004 2.Design of Machine Elements: V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

Reference Books:

1.Machine Design: Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.

2.Design of Machine Elements- K Ganesh Babu and K Srithar, McGRAW-HILL EDUCATION (INDIA) Pvt Ltd, Chennai, 2009

3.K. Mahadevan and Balaveera Reddy, Design Data Hand Book, CBS Publication, Fourth Edition. 2016.

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V
Course Title: Finite Element Metho	ods	Course Code:19EMEC301
L-T-P:3-0-0	Credits:3	Contact Hours:3Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	
	المثلم ا	

Unit I

1. Introduction to FEM: 7 Hrs

FEM paradigm: History, present/future, Research, Application, stress at a point, stress components on arbitrary plane, Equilibrium equations, compatibility equations, Generalized Hook's law, Plane stress and plain strain, principle of minimum potential energy and virtual work, RR method, FEM steps, Advantages, disadvantages and limitations.

2. Interpolation Functions for General Element Formulation: 8 Hrs

Discreatisation process, types of elements, size of elements, location of node, node numbering scheme and mesh requirements in finite element method, Galerkin's methods with Numericals, polynomial form of interpolation functions, convergence requirements.

Unit II

3. FEA analysis: 8 Hrs

Pascal triangle, shape functions (1D, 2D, LST, CST, Quad, Higher order elements), Stiffness matrix and its properties. Elimination approach, Penalty approach and Thermal effect based practical engineering problems.

4. Advanced FEA analysis: 7 Hrs

6. Post processing techniques: 5 Hrs

Multi-point constraint, Iso-parametric and Axi-symmetric elements. Practical aspects of industrial machine components, Field issues related to structural applications using higher order polynomials.

Unit III

Validate and interpret the results, Average and Un-average stresses, Special tricks for post processing, Design modification, CAE Reports

7. Experimental Validation and Data Acquisition: 5 Hrs

Strain gauge, Photo elasticity, Load cells, Torque Sensors/Transducers, Dynamic tests, Acceleration test, Fatigue life measurement, Natural Frequency measurements.

Text Books

1.K. H. Huebner, D. L. Dewhirst, D. E. Smith and T. G. Byrom, The Finite Element Method for Engineers, 4th edition, Wiley, New York, 2001.

2.T. R. Chandraputala and A. D. Belegundu, Introduction to Finite Elements in Engineering, Third Edition, Prentice Hall of India, 2004.

3.NitinGhokale, Practical finite element analysis, Finite to infinite, 2008.

Reference Books:

1.Introduction to the Finite Element Method, by N. S. Ottosen and H. Peterson. Prentice-Hall, Englewood Cliffs, 1992.

2.S. S. Rao, Finite Element Method in Engineering, Fourth Edition, Elsevier Publishing, 2007.

Program: Bachelor of Engineering		Semester: V	
Course Title: CAD modelling and PLM Lab		Course Code:19EMEP301	
L-T-P:2-0-2 Credits:4		Contact Hours:15 Hrs/week	
ISA Marks:80	ESA Marks:20	Total Marks:100	
Teaching Hours:180			
Unit I			

1. Sketcher

Brief introduction on Sketcher work bench environment

Structure of users and saving of files. Exercises on Sketch Tools, Profile Tool bar and Constraint Tool bar: Generate the following 2D sketches and make them ISO-constrained

2. Part Design

Exercise on 3d models using pad, slot, shaft, groove, hole, rib and stiffener commands, cut revolve, Dress up commands like chamfer, fillets etc. (Multi-Sections Solid and Removed Multi-Sections Solid Commands)

3. Generative shape design (GSD)

Exercises using GSD to generate complicated surfaces using sub tool bars: Extrude-Revolution, Offset Variable and Sweep Extrude, Revolve, Trim, Transformation and Fillet tools

Exercises on Surfaces and Operations Tool bar: (Conversion of Surface model into Solid model)

4. Assembly Design

Introduction to Assembly Design Work bench; Bottom-Up and Top-Down assembly approaches Invoking existing components into assembly work. Exercise to demonstrate Top-Down assembly approach.

5. Drafting

Converting existing 3D models into 2d drawings with all relevant details, sectional views, sheet selection, indicating GD&T symbols and dimensioning.

6. Enovia

Introduction to CATIA 3D experience PLM Import the existing CATIA 3D experience data and store in Search and identify the data located in 3D experience database Modify the data in any PLM process Sharing information with users Analyze and Identify impacts of modifications Save the modifications into database

Text Books

Reference Books:

Training material given by EDS on 3D experience

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V
Course Title: Automation Lab		Course Code:15EMEP303
L-T-P:0-0-2 Credits:2		Contact Hours:4 Hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:48 Examination Duration:2 Hrs		
Unit I		

1. Automation Using Hydraulic Systems 8 Hrs

Introduction to Fluid Power, Advantages and application of Fluid Power, Types of Fluid Power System, Properties and Types of Fluids. Pascal's Law, Continuity Equations, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping Theory, Pump Classification, Gear Pumps, Vane Pumps, Piston Pumps, Pump Selection, Hydraulic Actuators and Motors. Control Components In Hydraulic Systems: Symbolic representation as per ISO 1219 and ISO 5599. Directional Control Valves – Symbolic representation, Constructional features, pressure control valves, flow control valves.

Hydraulic Circuit Design (Simulation of circuits in Automation studio): Control of single and double – acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits, cylinder synchronizing circuits, speed control of hydraulic cylinder, accumulator circuits.

2. Automation using Pneumatic Systems 5 Hrs

Choice of working medium, characteristics of compressed air. Structure of Pneumatic control system. Linear cylinders, Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, use of memory valve. Flow control valves and speed control of cylinders supply air throttling and exhaust air throttling, use of quick exhaust valve. Signal processing elements: Use of Logic gates – OR and AND gates pneumatic applications.

Unit II

3. Automation Using Electronic Systems 5 Hrs

Control of hydraulic and pneumatic elements through PLC, Electro-hydraulic servo valve, Electro-pneumatic servo, Programmable automation controllers (PAC)

4. Robot programming & Control 5 Hrs

Programming languages description of ABB (RAPID Programming), Manual teaching, lead through teaching, (simple examples).

Experimer	nts	Duration (in hrs)
1.	Characteristic Curve of Variable Displacement Hydraulic Pump	0.5
2.	Carryout pressure intensification of a single-rod cylinder	0.5
3.	Carryout Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV	0.5
4.	Center Configuration of 4/3 DCV	0.5
5.	Application of Regenerative Circuit	1
6.	To study the application of Hydraulic Accumulator	1
7.	To study the Hydraulic Motor with 4/3 DCV	1
8.	Direct and Indirect control of Double Acting Cylinder	0.5
9.	Direct and Indirect control of Single Acting Cylinder	0.5
10.	Speed Control of Single Acting Cylinder	0.5
11.	Position Dependent Control of a Double Acting Cylinder with Mechanical Limit Switches	0.5
12.	Design of PLC system to control single acting cylinder, double acting cylinder, meter-in, meter-out and regenerative action. Clamping and punching operation.	1
13.	To control extension/retraction with or without delay using ladder logic	1

←<u>BACK TO SEMESTER-V</u>

Ourco T	Title: FEN	or of Engineering	,		emester: V ourse Code:19EME	D3U3
-T-P:0-0			Credits:1			
				WEEK		
	Iarks:80ESA Marks:20Total Marks:100ing Hours:24Examination Duration:2Hrs					
			Examination Duration			
cientific Aethods ntroduc	s to searc tion to A	h Exposure (Res h/extract Journa NSYS Workbencl	earch Education): Il papers (Reputed journa n and familiarity. Ies: Problem Identificatio		rring papers, Draftir	ng a paper
Category	y: Demor	stration				No. of Lab. Sessions
1	Methoo papers, Introdu	ls to search/extr Drafting a paper ction to ANSYS V	sure (Research Education act Journal papers (Reput : Vorkbench and familiarity e field issues: Problem Ide	ed journal pa	per), Referring	03
ategory	y: Exercis	es				
Expt./ lob No	Experiment/job Details				No. of Lab. Sessions	
1	a. b.	tructural analysis Uniform bar, Bracket, Machine Compo				01
2		-	ts (Different Boundary Co ment	onditions)		01
3	a. b.	ear Structural A Geometric Nonl Material Nonlin Contact Nonline	inearity earity			02
4		c Analysis (Moda	al/Harmonic/Transient An Boundary Conditions)	nalysis)		01
5	a.	l Analysis Fins Heat Exchanger Machine compo				01
6	a)	st & Impact Ana Mobile drop tes TV, Refrigerator	ysis t			01
						01
7	Optimiz	ation				01

Identify the component (Sub-assembly need have Minimum 3 to 4 components) Start from scratch

- Measure the dimensions of component
- > Generate the Solid Modeling of components with overall assembly (In any of the CAD Software)
- > Import the model in neutral form to ANSYS Workbench
- > Collection of data relevant to Material Properties

> Understand the physics of the problem (Working Principle with load's and boundary conditions) Interpretation of Results with conclusion.

Category: Open ended

- 1. Identify field issue pertaining to any component/product in today's industry.
- Collect the information/literature on earlier worked project through external/internal search

 a. (Journal Paper/Patent/reports)
- 3. Comprehend the physics of the problem with working principle.
- 4. Prepare the abstract and apply to a national/international conference
- 5. Identify material properties, boundary conditions and load steps.
- 6. Carryout the analysis as per the FEA steps.
- 7. Provide engineering solutions to the identified sub assembly (deformation and stresses, material change, weight reduction, increasing load bearing capacity, fatigue life calculation, prediction of endurance limit of component and damage factor).

8. Prepare the draft on the worked-out problem and apply to a national/international conference

Materials and Resources Required:

1.Books/References: Nitin Ghokale, Practical finite element analysis

2. Manuals: Sham Tickoo, ANSYS for Engineers and Designers

Reference Books:

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V
Course Title: Mini Project		Course Code:15EMEW301
L-T-P:0-0-3	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:36	Examination Duration:3 Hrs	

The mini project is designed to help students develop practical ability and knowledge in reverse engineering. Every batch of 5 students are required to select an equipment such as Table fan, toy car, pump, bicycle etc. They have to dismantle the complete assembly and take measurements using various measuring instruments such as vernier calipers, micrometer, profile projector,3D imager, portable CMM etc. Good sketches are to be made and converted into 3D part using 3D -Experience software. From then on, the complete assembly in 3D, 2D assembly and BOM have to be prepared.

The students will have to develop proficiency in 2D and 3D modeling, Special emphasis is given on incorporating Geometrical dimensioning &tolerancing on the 2D manufacturing drawings. He/she should be well versed in material selection based on applications and develop assembly and part drawings as per industry standard, in addition students have to include one innovative idea in their project. And incorporate the same in the design.

Individual team has to prepare final model in 2D and 3D with proper documentation for the entire project. Progress of the project work will be presented by student's periodically to the panel of reviewers

Phases of mini Project Work:

- Students in batches will first select a product to carry out reverse engineering.
- Dismantle the assembly into individual parts.
- Take dimensions and make good legible sketches.
- Carry out 3D models of all the parts in 3D experience software (Catia).
- Assemble the parts in software to see a complete assembly.
- Render the product and show it in an actual environment.
- Convert it into 2d assembly with ballooning and BOM.
- Part drawings to be converted into 2D manufacturing parts as per industry standards, with GD&T symbols wherever necessary.
- Students have to include an Innovative idea and incorporate the same in their project.
- Prepare a final detailed report explaining the various stages and give a presentation as a team.

Text Books		
Reference Books:		

Program: Bachelor of Engineering		Semester: V	
Course Title: Mechanical Vibration	IS	Course Code:15EMEE301	
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:40	Examination Duration:3 Hrs		

Unit I

1. Undamped Free Vibrations 6 Hrs

Introduction, Importance of vibration and its physical significance, Types of vibrations, Mechanical system components, Equivalent stiffness of spring combinations, Derivation of differential equation and Natural frequency for undamped free vibrations of single degree freedom systems, Newton's method and Energy method, Torsional vibrations, Transverse vibrations of beams.

2. Damped Free Vibrations 5 Hrs

Introduction, types of damping, study of response of single degree freedom viscous damped systems for cases of under damping, critical damping and over damping, Logarithmic decrement, Torsional system with viscous damping.

3. Whirling of Shafts 5 Hrs

Introduction, Whirling of shafts with and without damping, Discussion of speeds above and below critical speeds, Introduction to Noise.

Unit II

4. Forced Vibrations 7 Hrs

Introduction, Forced vibrations of single degree freedom viscous damped system due to harmonic excitation, Response of a rotating and reciprocating unbalance system, Support excitation, Vibration isolation and transmissibility.

5. Two Degree of Freedom Systems 7 Hrs

Introduction, Principal modes and Normal modes of vibration, Vibrations of undamped systems, Torsional vibrations, Forced harmonic vibration, Systems with damping, Co-ordinate coupling; applications in vehicle suspension, Dynamic vibration absorber.

Unit III

6. Multi Degree of Freedom Systems 5 Hrs

Introduction, Influence coefficients, Maxwell reciprocal theorem, Orthogonality principle, Matrix iteration method to determine all the natural frequencies of multi degree freedom systems, Dunkerley's method, Rayleigh's method.

7. Vibration Measurement and Condition Monitoring 5 Hrs

Introduction, Vibrometer and accelerometer, Frequency measuring instruments. Signal analysis: Spectrum analyzers, Dynamic testing of machines and structures, Experimental modal analysis, Machine maintenance techniques, Machine condition monitoring techniques, Vibration monitoring techniques.

Text Books

1. Singiresu S. Rao, Mechanical Vibrations, 6th Edition, Pearson Education, 2018.

2.W.T. Thomson and Marie Dillon Dahleh, Theory of Vibrations with Applications, 5th Edition, Pearson Education, 2014.

Reference Books:

Graham Kelly, Mechanical Vibrations: Theory and Applications, Cengage Learning, SI Edition, 2012.
 M. L. Munjal, Noise and Vibration Control, World Scientific Publishing Co, Pvt. Ltd., 2013

Unit II

Program: Bachelor of Engineering		Semester: V
Course Title: Product Innovation		Course Code:15EMEE304
L-T-P:2-1-0	Credits:3	Contact Hours:4Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:24 Tutorial Hrs:16	Examination Duration:3 Hrs	

Unit I

1. Technological Innovation: 8 Hrs

Introduction, Sources of Innovation, Types and Patterns of Innovation, drivers for innovation, Innovation enablers, Innovation culture, Innovation Metrics, Challenges for Innovation, innovation Success stories, New product Innovation Process, Innovation progression, growth through Innovation, Idea generation, Idea Screening, Proof of Concept, team formation, Reality check.

2.Customer Analysis: 6 Hrs

Customer Needs Analysis, Big Problem, W's of Customers, Target Customer Segments, Consumer customer segmentation, Customer Value realization, Capture Customer Needs, Classification of needs, Standards Battles and Design dominance, Timing of entry

3. Market Analysis: 9 Hrs

Innovation Opportunity, Environmental Analysis, Fore-sighting, S-curve for technology and consumer, Porters 5 forces, market Capacity, Evaluation of opportunity, Volume for casting, Competition Analysis: W's of Competition, Tools to compare products, sources for Competitive information.

4.Tools for Innovation: 7 Hrs

5 Phases, Divergent and Convergent thinking, demographics, Contextual maps, Progression curve, Janus Cone, Generational arcs, Go to Market With innovation.

5.Innovation Processes and Methods: 10Hrs

Unit III

TRIZ – Theory of innovative problem solving, ToC – Theory of Constraints, 8 Steps of Innovation

Text Books

Reference Books:

1. Playbook for strategic foresight and Innovation – Stanford University

2.8Steps of Innovation - R. T. Krishnan and V. Dabholkar

3.TRIZ and ToC - Handouts

4.A Unified Innovation Process Model for Engineering Designers and Managers (In Design Thinking) Skogstad, P., Leifer, L. edited by Meinel, C., Leifer, L., Plattner, H. Springer Berlin Heidelberg. 2011: 19–43

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V
Course Title: Advanced Machining	Processes	Course Code:15EMEE305
L-T-P:3-0-0	:3-0-0 Credits:3	
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	
	Unit I	·

1: Introduction to Advanced Machining Processes 3 Hrs

Introduction to new methods of production; Need and Capability analysis of various processes, Classification and Selection of Non-Traditional Machining Technologies, Hybrid Processes, Cases.

2: Mechanical Advanced Machining Processes 12 Hrs

Abrasive Jet Machining (AJM): Machining setup, parametric analysis, Process capabilities. Ultrasonic machining (USM): Machining setup, Mechanics of Cutting - Model Proposed by Shaw, Parametric analysis, Process capabilities, Abrasive Flow Machining, Magnetic Abrasive Finishing. Water jet cutting (WJC).

Unit II

3: Thermal Advanced Machining Processes 8 Hrs

Plasma Arc Machining (PAM): Working System, Elements of PAM, Process Performance, PAM Parameters, Process Characteristics, Safety Precautions, Electric Discharge Machining (EDM): Working Principle, Analysis, Process Variables, Process Characteristics, Applications

4: Thermo-electric Advanced Machining Processes 7 Hrs

Electron Beam Machining (EBM): Working Principle, Process Parameters, Characteristics of The Process, Application of EBM, Laser Beam Machining (LBM): Working Principle, Types of Laser, Process Characteristics, Applications, Ion Beam Machining (IBM): Working Principle, Process Parameters, Applications

Unit III

5: Chemical Machining Processes 5Hrs

Chemical Machining: Elements of process, Process Characteristics of CHM. Electro Chemical Machining: Elements and Characteristics and Theory of ECM

6: Hybrid Processes 5 Hrs

Electro chemical grinding (ECG), Electrochemical spark machining (ECSM), electrochemical arc machining (ECAM) and electro discharge abrasive grinding (EDAG).

Text Books

1. Jain V. K. "Advanced Machining Processes", Allied Publishers, Private Limited.

2.Pandey P. C. and Shan H. S., "Modern Machining Processes", TATA McGraw Hill Publishing Company Limited, New Delhi.

Reference Books:

1.HMT, "Production Technology", TATA McGraw Hill.

2.Adithan M, "Modern Machining Methods", S. Chand & Company, New Delhi.

Program: Bachelor of Engineering	<u> </u>	Semester: V
Course Title: Turbo Machines		Course Code:18EMEE303
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	
	l Init I	

Unit I

1. Principles of Turbo Machinery 5 Hrs

Definition of turbo machine, Comparison with positive displacement machine, Classification; Application of first and second law to turbo-machines, Efficiencies. Dimensionless parameters and their physical significance, Effect of Reynolds number, Specific speed, Illustrative examples on dimensional analysis and model studies.

2.Energy Exchange in Turbo Machine 5 Hrs

Euler Turbine equation, Alternate form of Euler turbine equation-components of energy transfer, Degree of reaction, General Analysis of a turbo machine-effect of blade discharge angle on energy transfer and degree of reaction, General analysis of centrifugal pumps and compressors-effect of blade discharge angle on performance, Theoretical head-capacity relationship.

3. General Analysis of Turbo Machines 6Hrs

Axial flow compressors and pumps-general expression for degree of reaction, velocity triangles for different values of degree of reaction, General analysis of axial and radial flow turbines-utilization factor and degree of reaction, Condition for maximum utilization factor-optimum blade speed ratio for different types of turbines.

Unit II

4. Compressible Flow Fundamentals 5 Hrs

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility

5. Centrifugal Compressors6 Hrs

Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging, stalling and prewhirl. Expression for pressure ratio developed in a stage, work done factor, efficiencies, Problems.

6. Axial flow Compressors 5 Hrs

Axial Flow Compressors: Basic operations, elementary theory, factors affecting stage pressure ratio, Blockage in the compressor annulus, degree of reaction, three-dimensional flow, design process, blade design, calculation of stage performance, compressibility effects, off-design performance.

Unit III

7. Flow through Variable Area Ducts 4 Hrs

Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

8. Steam Turbines 4Hrs

Classification, single stage impulse turbine, condition for maximum blade efficiency, stage efficiency. Compounding-need for compounding, method of compounding, impulse staging- condition for maximum utilization factor for multi stage turbine with equiangular blades, effect of blade and nozzle losses, Reaction turbine, Parson's reaction turbine, condition for maximum blade efficiency, reaction staging, Problems on single stage turbines only.

Text Books

1.ShepherdD.G., Principals of Turbo Machinery, Macmillan Publishers, 1st Edn. 1964

2.Yadav R., (2007) 'Steam & gas turbines and power plant engineering', Central Publishing House

Allahabad, Vol. 1,

3.S. M. Yahya, Turbines, Compressors & Fans, Tata McGraw Hill Co. Ltd., 2nd edition, 2002.

4.E Rathakrishnan, Gas Dynamics, PHI- 2nd edition, 2009.

Reference Books:

1.Kadambi V. Manohar Prasad, An Introduction to Energy Conversion, Vol-III 2.Turbo Machinery, New Age International, 1stEdn, 2006.

Saravanamutto H.I.H, Rogers G.F.C., Cohen H, Gas Turbine Theory, 5thedn., Pearson Education, 2006.

Program: Bachelor of Engineering		Semester: V
Course Title: Additive Manu	facturing Processes	Course Code:22EMEE301
L-T-P:3-0-0	Credits:3	Contact Hours:3Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3Hrs	

Unit I

Chapter 1: Introduction and Basic principles: 04hrs

What is AM, benefits of AM, Development of AM technology, generalized AM process chain.

Chapter 2: Vat photo-polymerization processes: 06hrs

Introduction, materials, UV-curable photopolymers, overview of photopolymer chemistry, resin formulations and reaction mechanisms, reaction rates, Laser scan Vat photopolymerization, photopolymerization process modeling, process benefits & drawbacks.

Chapter 3: Powder Bed Fusion Processes: 06hrs

Introduction, materials (Polymers and Composites, Metals and Composites, Ceramics and Ceramic Composites), Powder Fusion Mechanisms (Solid-State Sintering, Chemically Induced Sintering, LPS and Partial Melting, Full Melting, Part Fabrication), Process benefits and Drawbacks.

Unit II

Chapter 4: Extrusion-Based Systems: 06hrs

Introduction, Basic Principles (Material Loading, Liquification, Extrusion, Solidification, Bonding, Support Generation), Fused Deposition Modeling.

Chapter 5: Sheet Lamination Processes: 06hrs

Introduction, Gluing or Adhesive Bonding, Bond-Then-Form Processes, Form-Then-Bond Processes, Material Processing Fundamentals (Thermal Bonding, Sheet Metal Clamping)

Unit III

Chapter 6: Directed Energy Deposition Processes: 06hrs

Introduction, General DED Process Description, Material Delivery (Powder Feeding, Wire Feeding), DED Systems (Laser Based Metal Deposition Processes, Electron Beam Based Metal Deposition Processes), Typical Materials and Microstructure, DED Benefits and Drawbacks

Chapter 7: Post-processing: 06hrs

Introduction, Support Material Removal, Surface Texture Improvements, Accuracy Improvements, Aesthetic Improvements, Preparation for Use as a Pattern, Property Enhancements Using Non-thermal Techniques, Property Enhancements Using Thermal Techniques.

Text Books

1. Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2015.

Reference Books:

- 1. Chee kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth edition of Rapid Prototyping, World Scientific Publishers, 2014.
- 2. Chua C.K., Leong K. F., and Lim C. S., "Rapid Prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.

Program: Bachelor of Engineering		Semester: V
Course Title: Thermal Management of EV Battery Systems		Course Code:22EMEE302
L-T-P:3-0-0	Credits:3	Contact Hours:3Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3Hrs	

Unit I

1. Introductory Aspects of Electric Vehicles: 7 Hrs

Technology Development and Commercialization, Hybrid Electric Vehicles (HEVs), Fuel Cell Vehicles (FCVs), Plug-In HEVs (or Range-Extended Hybrids), Energy Storage System- Batteries, Ultra capacitors, Grid Connection, Vehicle thermal management,

2. Electric Vehicle Battery Technologies: 8 Hrs

Current Battery Technologies, Battery Technologies under Development, Battery Characteristics, Battery Management Systems, Battery Manufacturing and Testing Processes,

Unit II

3. Phase Change Materials for Passive TMSs: 7 Hrs

Basic Properties and Types of PCMs, Measurement of Thermal Properties of PCMs, Heat Transfer Enhancements, Cost and Environmental Impact of Phase Change Materials, Applications of PCMs, Heat Exchanger Design and Optimization Model for EV Batteries using PCMs, Melting and Solidification of Paraffin in a Spherical Shell from Forced External Convection

4. Simulation and Experimental Investigation of Battery TMSs: 8Hrs

Numerical Model Development for Cell and Sub-modules, Cell and Module Level Experimentation Set Up and Procedure, Vehicle Level Experimentation Set Up and Procedure, Simulations and Experimentations on the Liquid Battery Thermal Management System Using PCMs,

Unit III

5. Energy and Exergy Analyses of Battery TMSs: 5Hrs

TMS Comparison, Thermodynamic Analysis, Modeling of Major TMS Components, Energy and Exergy Analyses, Liquid Battery Thermal Management Systems, Trans-critical CO₂-Based Electric Vehicle BTMS

6. Cost, Environmental Impact and Multi-Objective Optimization of Battery TMSs: 5 Hrs

Exergo-economic Analysis, Exergo-environmental Analysis, Optimization Methodology, Liquid Battery Thermal Management Systems, Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium-Ion Battery, Thermal Management Solutions for Electric Vehicle Lithium-Ion Batteries based on Vehicle Charge and Discharge Cycles

Text Books

- 1. Ibrahim Dinçer, Halil S. Hamut, Nader Javani, Thermal Management of Electric Vehicle Battery Management Systems, 1stEdn John Wiley & Sons, 2016
- 2. John G. Hayes, GoodarziA., Electric Power train Energy Systems, Power electronics and drives for Hybrid, electric and fuel cell vehicles, Wiley Publication

Reference Books

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering		Semester: V
Course Title: Advanced CAE - I		Course Code:18EMEE301
L-T-P:0-0-3	Credits:3	Contact Hours:6 Hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:80	Examination Duratio	n:2Hrs
1.Introduction to Finite Element	t Method and Altair Hype	er works 3hrs
2.Hypermesh workbench 6 hs		
Getting started with Hyperme	sh	
Interacting with panels		
3.Geometry Clean up – Theory 2	12 hrs	
Tools used to geometry clean	•	
(Edge edit, Create Surface and		e Edit, Delete)
Theory and Demo Exercise – 0		
4.2-D mesh Explanation – Theor	•	
Auto mesh and Different types		
Types of 2 D mesh (Ruled, Spli	ne, Rotate)	
Quality Parameters checking.		
Normal's and Edge Checking a		
Theory and Demo Exercise – 0		
5.3-D mesh Explanation – Theor	y 18 hrs	
Volume mesh Creation		
Types of 3 D mesh (HexaPenta	Type, Tetra mesh)	
Quality Parameters checking.	1 11 II II	
Normal's and Edge Checking a		
Theory and Demo Exercise - 03		
6.1-D mesh Explanation – Theor	•	
Creation of 1 D elements (Bar,	•	
Creation of Rigid elements (Rb		
Creation of Weld elements bet	tween two adjacent comp	onents
Demo Exercise - 03 No	uning antistant selves of	
7.Execute Linear Static Analysis		
Theory and Demo Exercise - 0		ent - 01 No
8.Perform Buckling Analysis usin		
Theory and Demo Exercise -		
9.Carryout Modal Analysis using Theory and Demo Exercise -		
•	01 No	
10. Analyze Thermal Analysis us	• •	5
1	01 No	- hvc
11. Execute Non-Linear Analysis	• •	
(Geometry, Material and Conta Text Books	act NUII-LIIIedí)	Theory and Demo Exercise - 03 No
Reference Books		
	Jomant Analysis 2rd Edit	ion Einita ta Infinita 2015
Nitin S Ghokale, Practical Finite E	Liement Analysis, 3rd Edit	ion, Finite to Infinite, 2015.

Program: Bachelor of Engineerin	g	Semester: V
Course Title: Bionic Design		Course Code:22EMEE303
L-T-P:1-2-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:80	Examination Duration:2Hrs	

1: Introduction and Background 08 Hrs

Introduction to Biomimicry and Systems, Background, Early Attempts at Biomimicry, Sustainability and its role on Engineering Domain, Design thinking and Innovation using Nature inspired design.

2: Bionic Design Methods/ Approach 07 Hrs

Biomimicry 3.8 Taxonomy, Study of Bionic Design methodologies proposed by scientists like: Ask Nature, Bio-Triz, Idea-Inspire, Bio Cards, DANE, Elise 3D, etc,.

3: Case Studies/ Caselet08 Hrs

Sudy of iconic engineering case studies that demonstrate the nature inspired design that include Travel, Motion, Energy, Colour, Light, Materials, Devices, Sensors, Control, Navigation etc..

4: Selection of Bio-Materials- An overview 07 Hrs

Introduction; Classes of bio materials: metals, polymers, FRPs, fabrics, nanocomposites, bioresorbable and bioerodable materials, ceramics, glasses.

Text Books

1. Biomimetics: Nature-Inspired Design and Innovation by Sandy B. Primrose, Wiley Publications 2020.

2.Cats' Paws & Catapults –Mechanical Worlds of Nature & People by Steven Vogel, W. W. Norton & Company

Biomimitics:, Biologically inspired Technologies, by Yoseph Bar-Cohen, Taylor and Fransis Publications Reference Books:

Program: Bachelor of Engineering		Semester: V ← BACK TO SEMESTER-V
Course Title: Programming		Course Code:18EMEE302
L-T-P:0-0-3	Credits:3	Contact Hours:6 Hrs/week
ISA Marks:80	ESA Marks:20	Total Marks:100
Teaching Hours:74	Examination Duration:2 Hrs	

1. Introduction to java: 6 Hrs

History and Features of Java, Internals of Java Program, Difference between JDK, JRE and JVM, Variable and Data Type, Naming Convention, JDK installation and configuration

2. OOP Concepts: 12 Hrs

Advantage of OOPs, Object and Class, Method Overloading, Constructor, static variable, method and block, this keyword, Package and Access Modifiers, Encapsulation, Object class, Java Array, call by Value and Call by Reference, Inheritance, Method Overriding, final keyword, Runtime Polymorphism, static and Dynamic binding, Abstract class and Interface, down casting with instance of operator.

3. String Handling: 5 Hrs

String, Immutable String, String Comparison, String Concatenation, Substring, Methods of String class, String Builder class, to String method, String Tokenizer class.

4. Exception Handling: 10 Hrs

Introduction, try and catch block, Multiple catch blocks, Nested try, finally block, throw keyword, Exception Propagation, throws keyword, Exception Handling with Method Overriding, Custom Exception

5. Collection framework: 5 Hrs

Array List class, Linked List class, List Iterator interface, HashSet class, Linked HashSet class, Tree Set class, Priority Queue class, Array Deque class, Map interface, HashMap class.

6. Database concepts: 10 Hrs

SQL (DDL, DML), PL-SQL, JDBC Drivers, steps to connect to the database, Connectivity with DB, Driver Manager, Connection interface, Statement interface, Result Set interface, Prepared Statement, Result Set MetaData.

7. HTML: 5 Hrs

Tags, Attributes and Elements, Links, Images, Tables, Forms.

8. CSS: 5 Hrs

CSS basics, styles, CSS syntax

9. JSP: 5 Hrs

JSP - Overview, JSP - Lifecycle, JSP - Syntax, JSP - Directives, JSP - Actions, JSP - Client Request, JSP - Server Response.

10. JavaScript/JQuery: 5 Hrs

JavaScript Output, JavaScript Statements, JavaScript Syntax, JavaScript Variables, JavaScript Operators, JavaScript Arithmetic, JavaScript Strings, JavaScript Events, JavaScript Loop, JavaScript Objects, JavaScript functions.

11. Design patterns: 6 Hrs

Singleton pattern, Factory pattern

Text Books / Reference Books:

1. Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition and Agile Practice Guide Bundle by: Project Management Institute

Reference Manuals :

1. Studio Modeling Platform: Business Modeler Guide3DEXPERIENCE R2018x

- 2.Studio Modeling Platform: Embedding MQL Guide3DEXPERIENCE R2018x
- 3.Studio Modeling Platform: Matrix Navigator Guide3DEXPERIENCE R2018x
- 4. DassaultSystemes Studio Customization Toolkit 3DEXPERIENCE R2018x

Dassault Systemes Documentation 3DEXPERIENCE R2018x

←<u>BACK TO SEMESTER-V</u>

Program: Bachelor of Engineering Semester: V		Semester: V	
Course Title: Advanced Statistics and Machine Learning		Course Code:19EMEE302	
L-T-P:0-0-3	Credits:3	Contact Hours:3Hrs/week	
ISA Marks:80	ESA Marks:20	Total Marks:100	
Teaching Hours:80	Examination Duration:2 Hrs		
	Unit I		
1. Introduction to Machine Learnin	g 25 Hrs		
Introduction to Supervised, Unsup	ervised, and Reinforcement Lear	ning; Statistics for ML; Exploratory	
Data Analysis; Use of Python and w	orking with CSV/XLS files.		
Python hands on: Installation, Intro	duction to Python libraries (Pandas	, Numpy, matplotlib and so forth)	
	Unit II		
2. Applied Statistics 15 Hrs			
Statistics for ML; Data Wrangling;	Exploratory Data Analysis; Visualiz	zation; Use of Python and working	
with CSV/DB			
Hands on: Preprocessing technique			
3. Machine Learning Methods 18			
•	-	Regularization; Feature Selection;	
Metrics for Prediction; Visualization			
	Unit III		
4. ML – Classification 22 Hrs			
Introduction to Classification; Logistic Regression; Random Forests; Metrics for Classification;			
Visualization; Use of Python and DB			
Text Books			
1. Trevor Hastie, Robert Tibshirani, and Jerome Friedman, "The Elements of Statistical Learning: Data			
Mining, Inference, and Prediction", Springer, 2017.			
2.Roger D Peng, "R Programming for Data Science", Learn pub, 2015.			
Reference Books:			
1.Geetha James, Trevor Hastie, Daniela Whitten, Robert Tibshirani, "An Introduction to Statistical Learning			
with Applications in R", Springer, 2017.			
2.Andrew Ng, "Machine Learning Yearning", <u>https://www.mlyearning.org/</u> .			
3. Michael Nielsen, "Neural Networks and Deep Learning", http://neuralnetworksanddeeplearning.com/.			

Program: Bachelor of Engineering		Semester: VI
Course Title: Professional Aptitude & Logical Reasoning		Course Code:16EHSC301
L-T-P:3-0-0	Credits:3	Contact Hours:3Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 H	rs
Unit –I - A	rithmetical Reasoning and A	nalytical Thinking
Chapter 1. – Arithmetical Reasoni	ng 10 Hrs	
Chapter 2. – Analytical Thinking	4 Hrs	
Chapter 3. – Syllogistic Logic	3 Hrs	
Uı	nit – II – Verbal and Non – Ve	rbal Logic
Chapter 1. – Verbal Logic	9 Hrs	
Chapter 2. – Non-Verbal Logic	6 Hrs	
	Unit – III - Lateral Thinki	ng
Chapter 1 Lateral Thinking	8 Hrs	
Text Books		
1.A Modern Approach to Verbal a	nd Non – Verbal Reasoning –	R. S. Aggarwal, Sultan Chand and Sons,
New Delhi		
2. Quantitative Aptitude – R. S. Ag	garwal, Sultan Chand and Sor	s, New Delhi
Reference Books:		
1.Verbal and Non – Verbal Reason	ing – Dr. Ravi Chopra, MacMi	llan India
2.Lateral Thinking – Dr. Edward De	Bono, Penguin Books, New [Delhi

Program: Bachelor of Engineering		Semester: VI
Course Title: Heat & Mass Transfer		Course Code:15EMEC305
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	

Unit I

1. Introductory concepts and definitions 6 Hrs

Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer combined heat transfer mechanism, Mass transfer: Definition and terms used in mass transfer analysis, Fick's first law of diffusion. Boundary conditions of 1st, 2nd and 3rd kind Conduction: General 3D- heat conduction equation in Cartesian coordinate, discussion on 3-D conduction in cylindrical and spherical coordinates (No derivation). 1-D conduction through plane and composite walls. Overall heat transfer coefficient. Mathematical formulation

2. One dimensional Steady State Conduction 5 Hrs

Heat flow and temperature distribution in plane wall. Critical thickness of insulation, Thermal resistance concept. Steady state conduction in slab, cylinder and spheres with heat generation. Heat transfer in extended surfaces of uniform cross-section without heat generation [No Derivations], Fin efficiency and effectiveness. Numerical Problems

3. One-dimensional transient conduction 4 Hrs

Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler charts) for transient conduction in slab, long cylinder and sphere, Numerical Problems

Unit II

4. Concepts and basic relations in boundary layers 5 Hrs

Flow over a body velocity boundary layer, general expressions for drag coefficient and drag force, thermal boundary layer. General expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct, Numerical problems based on empirical relation given in data handbook.

Free or Natural Convection: Dimensional analysis for free convection- significance of Grasshoff number, correlations for free convection over vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres.

5. Forced Convection 5 Hrs

Dimensional analysis for forced convection, significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Correlations for hydrodynamically and thermally developed duct flows, Correlations for flow over flat plate, cylinder and sphere.

6. Heat Exchangers 5 Hrs

Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems

Unit III

7. Condensation and Boiling 5 Hrs

Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface [No Derivation]; use of correlations for condensation. Regimes of pool boiling pool boiling correlations [Theory].

8. Radiation heat transfer 5 Hrs

Thermal radiation; definitions of various terms used in radiation heat transfer; Stefan-Boltzmann law,

Kirchhoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces, intensity of radiation and solid angle; Lambert's law; radiation heat exchange between two finite surfaces configuration factor or view factor. Numerical problems

Text Books

1.NecatiOzisik - Heat transfer-A basic approach, 2ndEdn, Tata McGraw Hill, 2002

2.M.Tirumaleshwar – Fundamentals of Heat & Mass Transfer, 1stEdn, Pearson education 2009

Reference Books:

1.Yunus A. Cengel - Heat transfer, a practical approach, 4thEdn, Tata McGraw Hill, 2011

2.Frank Kreith, Raj M. Manglik, Mark S. Bohn, Principles of heat transfer, 7th Edn., Cengage Learning, 2011

3.Frank P. Incropera and David P. Dewitt- Fundamentals of Heat and mass transfer, 7th Edn, John Wiley, 2011

4.P.K. Nag - Heat and Mass transfer, 3rd Edn., Tata McGraw Hill, 2011

Program: Bachelor of Engineering	
ity Engineering	Course Code:15EMEC302
Credits:4	Contact Hours:4Hrs/week
ESA Marks:50	Total Marks:100
Examination Duration:3 Hrs	
	ity Engineering Credits:4 ESA Marks:50

Unit I

1. Fundamentals of Metrology 6 Hrs

Objectives of Metrology, Standards of physical quantities (mass, length, time, temperature, force, Velocity, density) types of standards, line and end standard, Slip gauges, Angle Gauges, Linear and Angular Measurements, Performance characteristics of measuring instruments, Calibration of instruments, The Process of Measurement, Significance of Measurement process, Methods of measurement, generalized measurement system, errors in measurement, gauges, comparators (mechanical and optical), Numerical

2. Dimensional Metrology 7 Hrs

Measurement of screw thread parameters, Terminology of screw threads, types of threads, Toolmakers microscope, profile projector, Gear terminology, Measurement of gear parameters. Gear tooth Vernier, Introduction to Surface Texture, Terminology as per Indian standard, Methods of measurement of surface finish, Working of Tomlinson surface meter, Taylor-Hobson Talysurf, Analysis of surface traces (RMS value, CLA value)

3. Limits, Fits and Gauges 7 Hrs

Introduction, limits, tolerance, and fits, types of fits, allowance. Hole basis and shaft basis systems, Indian standard system for limits and fits (IS 919-2709), types of gauges, Taylor's principle and gauge design. Numerical

Introduction to GD&T Terminology, Maximum Material control (MMC) & Least Material Control (LMC), Form and orientation tolerances in detail with application examples, Interpretation of drawings with GD & T and Exercises

Unit II

4. Advanced Metrology 7 Hrs

CMM(Coordinate Measuring Machine) : Co-ordinate Metrology, CMM configurations, hardware components, Software, Probe sensors, Displacement devices, applications

Laser Metrology : Free electron laser – optical alignment, measurement of distance – interferometry, reversible counting, refractive index correction, reversible counting, refractive index correction, surface topography and optical component testing

5. Analysis of Experimental Data 6Hrs

Causes and Types of Experimental Errors, Error Analysis on a Common sense Basis, Uncertainty Analysis and Propagation of Uncertainty, Evaluation of Uncertainties for Complicated Data Reduction, Statistical Analysis of Experimental Data, Probability Distributions, The Gaussian or Normal Error Distribution, Comparison of Data with Normal Distribution, The Chi-Square Test of Goodness of Fit, Method of Least Squares, The Correlation Coefficient, Multivariable Regression, Standard Deviation of the Mean, Students t-Distribution

6. Quality Engineering 7 Hrs

Quality concepts, Dimensions of quality, Inspection, Objectives of Inspection Difference between Inspection & Quality Control,7 QC tools, Statistical methods for quality control and improvement Basic Principles of Control charts, Control charts for variables, process capability and six sigma

Unit III

7. Control charts for Attributes and Acceptance sampling 5Hrs

Control chart for fraction non-conforming, variable sample size, Number of defective chart, Control chart for Non conformities (defects) and Control chart for defects Average number of nonconformities. Types of sampling plans, operating characteristic (OC) curves

8. Introduction to TQM 5 Hrs

Basic approach, TQM framework, TQM principles-Leadership, Employee involvement, Empowerment, Team and Teamwork, Quality circles ,Continuous process improvement – PDCA cycle, 5S, Kaizen – Supplier partnership – Partnering, TQM techniques- Bench marking, FMEA, QFD, TPM

Text Books

1.Beckwith Marangoni and Lienhard, Mechanical Measurements, 6th Edition, Pearson Education 2007 2.Doeblin E.O., Measurements Systems, Applications and Design, 5th Edition McGraw –Hill,2003 3.Montgomery D. C., Introduction to Statistical Quality Control, 8th Edition John Wiley & Sons, Inc2019

Reference Books:

1.Holman J P, Experimental Methods for Engineers, 8th Edition McGraw-Hill Publications 2011 2.Connie. L. Dotson, Fundamentals of Dimensional Metrology, 6th Edition Cengage Publications 2015 3.Bosch J A, Giddings and Lewis Dayton, Marcel Dekker, Co-Ordinate Measuring 4.Machines and Systems 2nd Edition CRC press 2015

Grant and Leavenworth, Statistical Quality Control, 7th Edition, McGraw-Hill Publications 1996

Program: Bachelor of Engineering		Semester: VI	
Course Title: Metrology and Quality Engineering Lab		Course Code:15EMEP301	
L-T-P:0-0-1	Credits:1	Contact Hours:2Hrs/week	
ISA Marks:80	ESA Marks:20	Total Marks:100	
Teaching Hours:24	Examination Duration:2 Hrs		

Brief description about the Experiments

1. Introduction to the Laboratory-Standards of measurement for Linear and angular dimensions.

2. Analysis of performance characteristics of measuring instruments using Hypothesis testing.

3. Analysis of Repeatability and Reproducibility using gauge R& R test.

4. Measurement of Screw thread and Gear parameters, surface roughness

5. Machine Tool Alignment Test (Lathe, Drilling, Milling).

6. Measurement of Dimensions and GD&T parameters of given components using CMM (Coordinate Measuring Machine).

7. Reverse engineering of the given component by extraction of 2-Dimensions of the given part using 3D scanner.

8. Testing the goodness of fit for the given quality characteristics by Chi- Square test.

9. Construction of control chart for variables and Analysis of process capability for the different components manufacturing.

10. Construction and Analysis of control charts for defectives.

11. Open Ended experiment- Error analysis, Gauge Design

Text Books

Reference Books:

1.Montgomery D. C., Introduction to Statistical Quality Control, 8th Edition John Wiley & Sons, Inc 2019 2.Hume K.J. & Sharp G.H, Practical metrology, 1st Edition ELBS & Macdonald 1970

3. Juran J.M. & F.M. Gryna, Quality Planning & Analysis, 3rd Re edition TMH Publications 1993

Program: Bachelor of Engineering		Semester: VI	
Course Title: Minor Project		Course Code:18EMEW301	
L-T-P:0-0-6	Credits:6	Contact Hours:6Hrs/week	
ISA Marks:80	ESA Marks:20	Total Marks:100	
Teaching Hours:36	Examination Duration:3 Hrs		

The minor project is offered as a 6 credit course to sixth semester students as studio mode project course. Course is conducted in studio mode where students work in team of 6 each. The course highlights the significance of Engineering Design and Product Design is Engineering. Also, students develop the proficiency of understanding the end users, their requirements and needs by conducting brief field and literature survey followed by product benchmarking which helps them to understand the insights of the problem. Further students develop the conceptual designs to best fit the constraints; one best design is evaluated and expanded to detailed 3D design and 2D drawing that fetches the bill of materials and recognizing suitable raw materials for prototyping. Students then move to Maker Space to develop the prototypes for the finalized design. Students master the skills of prototyping like use of hand tools, machining tools, and 3D printing wherever required. Most of the projects involves using of circuits, actuators, motors and other electrical components that help them to learn the basics of mechatronics. The final prototype is functional and demonstrates the conceptual design requirements. Efforts are put to make sure that these prototypes are innovative and involve newer functions. The entire course is reviewed in three timely reviews to evaluate Design, Build and Control aspects of the project work.

Phases of mini Project Work:

- Students in batches will first select a product to carry out reverse engineering.
- Dismantle the assembly into individual parts.
- Take dimensions and make good legible sketches.
- Carry out 3D models of all the parts in 3D experience software (Catia).
- Assemble the parts in software to see a complete assembly.
- Render the product and show it in an actual environment.
- Convert it into 2d assembly with ballooning and BOM.
- Part drawings to be converted into 2D manufacturing parts as per industry standards, with GD&T symbols wherever necessary.
- Students have to include an Innovative idea and incorporate the same in their project.
- Prepare a final detailed report explaining the various stages and give a presentation as a team.

Text Books

Reference Books:

Program: Bachelor of Engineering		Semester: VI	
Course Title: Failure Analysis in D	esign	Course Code:15EMEE302	
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:40	Examination Duration:3 Hrs		

Unit I

1. Introduction 8 Hrs

Study of Failure criteria and its importance, Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples.

2. Surface Failure 7 Hrs

Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive wear, Corrosion wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Numerical examples.

Unit II

3. Fatigue of Materials 5 Hrs

History of failure due to fatigue loads and development of fatigue failure, Concepts and terminology, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.

4. Stress-Life (S-N) Approach 6 Hrs

S-N curves, Statistical nature of fatigue test data, General S-N behavior, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach, Case study.

5. Strain-Life (ε-N) approach 5 Hrs

Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, Mean stress effects, Effect of surface finish, Life estimation by ϵ -N approach.

Unit III

6. Creep deformation 5 Hrs

The evolution of creep damage, primary, secondary and tertiary creep. Stress dependence of creep – power law dependence. Comparison of creep performance under different conditions – extrapolation and the use of Larson-Miller parameters. Creep-fatigue interactions. Numerical examples.

7. Buckling Analysis of rectangular plates 4 Hrs

Governing differential equation and boundary conditions, plate with all edges simply supported, plates with other boundary conditions, buckling under in-plane shear, post buckling analysis.

Text Books

1.Ralph I. Stephens, Ali Fatemi, "Metal Fatigue in Engineering", John Wiley New York, 2nd edition, 2001. 2.Jack A Collins, Failure of Materials in Mechanical Design John Wiley & Sons, 1993.

3.Gambhir, M.L, Stability Analysis and Design of Structures, Springer-Verlag, 2004.

Reference Books:

1. Robert L. Norton, Pearson, "Machine Design- An Integrated Approach", 2nd edition, 2000.

Program: Bachelor of Engineering		Semester: VI
Course Title: Noise, Vibration and Harshness (NVH)		Course Code:22EMEE304
L-T-P:2-0-1	T-P:2-0-1 Credits:3	
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:30	Examination Duration:3 Hrs	
Unit I		

1. Introduction to NVH 05 Hrs

Review of fundamentals of vibrations, History of NVH, Significance of NVH study, Advantages and Limitations, Environmental aspects, Application areas of NVH, Economic implications, and Future trends.

2. Vibration Measurement 05 Hrs

Introduction, Classification of vibration transducers, Displacement transducers: Eddy current and Fiber optic probe, Velocity transducers: Electromagnetic, Acceleration transducers: Piezoelectric and MEMS. Data acquisition and processing, signal operations, frequency domain analysis, sampling of continuous time signals, Undersampling and aliasing, Anti-aliasing filter, Fast Fourier transform, leakage, windowing and averaging.

3. Vibration Monitoring and Analysis Techniques 05 Hrs

Introduction, Sources of vibration in rotating machines, Common machinery faults requiring diagnosis, Transducer considerations, vibration data collection errors, time domain analysis, Lissajous pattern, frequency domain analysis, Experimental aspects of modal testing, FRF data of SDOF and MDOF systems, Signal processing problems and solutions in modal analysis, Modal parameter extraction methods for SDOF and MDOF systems: Peak-picking method, Circle fit method.

Unit II

4. Vibration Severity and Standards 05 Hrs

Introduction, Classification of severity of machine vibrations, Severity of human beings to vibrations, Ride comfort analysis of railroad vehicles, Vibrations affecting people in buildings, Standards for vibrations of buildings and machinery, Case studies on vibration analysis.

5. Vibration Control 05 Hrs

Introduction, Vibration Nomo graph and vibration criteria; Reduction of vibration at the source, Control of vibration; Control of natural frequencies, Introduction of damping, Vibration isolation for different types of foundation, Shock isolation, Active vibration control, Numericals.

6. Finite Element Method for Vibration Problems 05 Hrs

Introduction, Equations of motion of an element, Mass matrix, stiffness matrix, and force vector, Transformation of element matrices and vectors, Equations of motion of the complete system of finite elements, Incorporation of boundary conditions, Consistent and lumped mass matrices, Numericals.

Unit III

7. Fundamentals of Acoustics 05 Hrs

Introduction, Human perception of sound, Noise limits in India, Permissible noise exposure for industrial workers, Sound wave propagation in 1-D, Acoustic quantities, Acoustic transducers, Parameters for choice of microphones, Types of microphones: Electrodynamic and Piezoelectric microphone,

8. Measurements in Acoustics 05 Hrs

Introduction, Sound level measurement, Sound power measurement, Sound pressure level measurement, Sound intensity measurement, Radiation fields of a sound source, Standards for sound measurement, Noise measurement case studies.

Text Books

1.C. Sujatha, Vibration and Acoustics, Tata McGraw-Hill Education, 2010

3.M. L. Munjal, Noise and Vibration Control, World Scientific Publishing Co, Pvt. 2013

Reference Books:

Reference books.		
Program: Bachelor of Engineering		Semester: VI
Course Title: Product Design & Development		Course Code:19EMEE303
L-T-P:2-1-0	Credits:3	Contact Hours:4Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:28, Tutorial Hrs: 12	Examination Duration:3 Hrs	

Unit I

1. VoC to Product Specifications 6 Hrs

QFD methods to develop product specification from VoC

Concept development methods – Functional Analysis, Mock-ups, Concept selection methods (Pugh Matrix, Customer Focus Groups, Delphi method), Gap analysis, Rapid prototyping techniques, First Order analysis of concepts.

2. Design Methods 10 Hrs

- 1. Knowledge based engineering design techniques
- 2. Design Optimization techniques, Robust design methods overview,
- 3. Design for Six Sigma (Quality) methodology
- 4. Design for "X" (X = Cost, Manufacturability, Assembly, Sustainability)
- 5. CAE led design techniques
- 6. Bio-inspired design

Value engineering – Function Cost relationship, Value Engineering tools and techniques, VE application in product design

Unit II

3. Product Development Process 3 Hrs

Program Management, Design and functional review methods (DFMEA), Assembly process and virtual builds, Quality goals and control plans

4. Product Verification and Validation 3 Hrs

Load goals and duty cycle definition, Reliability and durability goals, Virtual prototyping techniques, Accelerated product verification methods

Unit III

5. Product family management 3 Hrs

Product lifecycle management; Evolution of product models and families, Modeling of product family lifecycle, Product Strategy, Product market positioning, Product positioning – psychological, Brand, customer segment.

6. Technology management 3 Hrs

Technology management methods, Technology as a competitive tool, Critical Component Development Process, Technology Development Process

Text Books

Reference Books:

- 1.Karl Ulrich and Steven Eppinge, Product Design and Development
- 2.Kenneth B. Kahn, The PDMA Handbook of New Product Development, Second Edition

3.Six Sigma Guide

Program: Bachelor of Engineering		Semester: VI	
Course Title: Piping Systems Design	1	Course Code:15EMEE303	
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:40	Examination Duration:3 Hrs		
	Linit I		

Unit I

1. Introduction to piping 2 Hrs

Role of piping design engineers, Inputs and outputs of piping department, Scope and prospects in various industries, trends in piping industry.

2. Piping systems Basics 3 Hrs

Process Design, Block Flow diagrams, Process flow diagrams (PFD), Piping and Instrumentation Diagrams (P&ID's), Commonly used symbols in PFD and P & ID, Lines/signals, Piping: services, equipments, Fluid codes (process), Insulation.

3. Codes and Standards 2 Hrs

Standards, major organizations for standards, Design code-ASTM standards, ASME standards

4. Piping elements and symbolic representations 4 Hrs

Fittings used to join pipes, Fittings used to change pipe direction, Fittings used to join different sizes of pipes, Fittings used for various purposes –such as flange, gaskets, Fittings used for branching, special fittings used for Branching.

Unit II

5. Valves 3 Hrs

Types of valves, control valves, safety valves, constructional features. Criteria for selection. Piping components, pressure relieving devices, constructional features, selection criteria. Gate valve, globe valve, ball valve, check valve, Butterfly valve, Diaphragm Valves, Needle valve, Piston valve, Knife Gate valve.

6. Process Equipments used in plants 3 Hrs

Pumps, storage tanks, vertical vessels, Horizontal dryer, Heat Exchangers, filters, blowers, Industrial boilers, steam turbines, compressors,

7. Process Instruments 3 Hrs

Pressure Gauge, Temperature Gauge, Level indicators, flow metering/indicators, Safety valves, breather valves.

8. Plot Plan Development 2 Hrs

Plot plan development, Basic data, steps to be considered while developing the plot plan. Layout of Liquid storage, Layout considerations for explosive tank farm, Layout of gas Storage.

Unit III

9. Piping Layouts 3 Hrs

Introduction to P&I Diagrams, process flow diagrams, standard symbols and notations. Introduction to various facilities required. Guidelines for plot plan/ plant layout. Introduction to equipment layout, piping layout, piping isometrics and bill of material. Typical piping system layout considerations. Piping arrangements, clearances and access, pipe rack, valve location, tower piping,

10. Conversion of orthographic to isometric view 3 Hrs

Introduction to isometric view, symbolic representation of elements in isometric environment, Pipe layout exercises,

11. Plant Layout Design software - LAB 12 Hrs

Introduction to CADMATIC Software, 15 most important shortcut commands and practice Construction of Pipe line Route, 4 (Pipe D) (refer to the drawing in the next subsequent pages), Construction of Pipe line Route 6 (Pipe F), Construction of Pipe line Route 8.(Pipe H), Construction of Pipe line Route 9(Pipe I), Construction of Pipe line Route 11 (Pipe K), Construction of Pipe line Route No 14 (Pipe M).

Construction of Pipe line Route No 3, 1, 2, (Pipe C, A, B), Construction of Pipe line Route No 5, 7, 10, (Pipe E, G, J), More features of software namely ladder, pipeline rack, and cable tray construction. Construction of all the pipeline network and Practice session

Text Books

1.Ed. Baushbacher, Roger Hunt, Process Plant Layout and Piping Design, 1993, Prentice Hall, 1993

Reference Books:

1.Suvidya Institute of Technology Pvt. Ltd, Manual on Piping Engineering, Suvidya Institute of Technology Pvt. Ltd. Mumbai

2.Yunus A. Cengel, John M. Cimbala, Fluid Mechanics Fundamental and Applications, 2nd, MGH, 2006

Program: Bachelor of Engineering		Semester: VI	
Course Title: Computer Integrated Manufacturing		Course Code:15EMEE306	
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week	
ISA Marks:50	ESA Marks:50	Total Marks:100	
Teaching Hours:40	Examination Duration:3 Hrs		
11441			

Unit I

1: Manufacturing operations: 8 Hrs

Production system facilities, manufacturing support systems, automation in production systems, manual labor in production systems. Automation principles and strategies, manufacturing industries and products, product/production relationships, production concepts and mathematical models, costs of manufacturing operations

2: Manufacturing systems: 7Hrs

Components, classification, manufacturing process functions, single station manufacturing cells, applications. Group Technology Part families, classification and coding, production flow analysis

Unit II

3: Cellular Manufacturing, Flexible Manufacturing Systems: 5Hrs

Cellular manufacturing quantitative analysis in cellular manufacturing, FMS components, planning and implementation, quantitative analysis of FMS

4: Material handling and storage: 5 Hrs

Material handling equipment, considerations in material handling system design, principles of material handling, material transport systems: storage systems: automated storage systems, automatic data capture, automatic identification methods

5: PLM and IIoT: 5Hrs

Areas of Product Life cycle Management (PLM), phases of product life cycle and technologies, benefits of PLM. Definition of Industrial Internet of Things (IIoT), Evolution, Enablers for IIoT platform, drivers, Benefits, protocols, challenges, future

Unit III

6: Robot fundamentals: 5 Hrs

Robot anatomy and related attributes, classification, robot control systems, end effectors, sensors in robotics, robot programming

7: Robot kinematics: 5 Hrs

Matrix representation, Homogeneous transformation matrices, Representation of transformations, Inverse transformation matrices, forward and inverse kinematics of robots, D-H representation of forward kinematic equations, degeneracy and dexterity

Text Books

1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", PHI.

2.Chris McMahon & Jimmie Browne, "CAD & CAM Principles", Practice & Mfg. Mngt.', Pearson Edu. Reference Books:

1 Padhakrishnan D "CAD/C

1.Radhakrishnan P., "CAD/CAM/CIM", New Age International Private Limited.

2.Zeid Ibrahim, "CAD/CAM", McGraw Hill International.

3.Rao P.N., 'CAD/CAM Principles and Applications', Tata McGraw-Hill.

4.Vajpayee S. K., "Principles of CIM", Prentice Hall of India.

5.Saeed B. Niku, "Introduction to Robotics", Prentice Hall of India.

Program: Bachelor of Engineering		Semester: VI		
Course Title: Design for Additive Manufacturing (DfAM) Lab Course Code:		Course Code: 22E	22EMEE305	
L-T-P: 1-0-2 C	redits: 3	Contact Hours: 5Hrs/week Total Marks: 100		
ISA Marks: 80 E	SA Marks: 20			
Teaching Hours: 80 E	kamination Duration: 3 Hrs			
	Experiment		Sessions	
	Design for Manufacturing ar Complexity, Hierarchical Com plexity), Core DFAM Concept	plexity, Functional	02	
2. Reverse Engineering metho	ds and Techniques		03	
3. Generation of CAD models	using software		03	
2. Generating STL files from th	e CAD models & working on ST	L files	02	
3. Modifying STL files using op	en source software		02	
4. Optimization techniques &	Topology optimization using sof	tware	06	
5. Processing optimized data u	using open source software		04	
6. Sending the tool path data for fabricating the physical part on 3D printer			03	
7. Support removal and post processing of 3D printed parts			02	
 Evaluation of the quality o accuracy and suitability for 	f fabricated parts for surface f given application.	inish, dimensional	01	
* REVERSE ENGINEERING SOFTWAR	E:			
1. Faro 3D Imager 2. Hand Sca	inner software			
* TOPOLOGY OPTIMIZATION SOFTW	/ARE:			
1. Autodesk Fusion 360 with Netf		01		
3. 3D Experience Functional Gene	•	rks		
* PRINTER SIMULATION SOFTWARE	:			
1. CURA 2. CubePro				

Program: Bachelor of Engineering		Semester: VI	
Course Title: HVAC Systems		Course Code: 15EMEE308	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 Hrs		

Unit I

1: Introduction to HVAC Systems and Psychrometry8 hrs

Purpose, applications, definition and components of air conditioning - Need and methods of ventilation. Evolution of air properties and psychrometric chart - Basic processes such as sensible heating/cooling, humidification/dehumidification and their combinations, steam and adiabatic humidification, adiabatic mixing, etc. - Bypass factor and Sensible heat ratio, Numerical problems.

2: Human Comfort & Indoor Air Quality: 4 hrs

Heat transfer from body, convection, radiation, conduction, evaporation, clothing resistance, activity level - Concept of human comfort - Thermal response - comfort factors - Environmental indices - Indoor air quality.

3: Summer and Winter AC Systems and Equipment 4 hrs

Simple summer AC process, Room sensible heat factor, Coil sensible heat factor, ADP - Precision AC - Winter AC. Classification of air conditioning systems, Filters, types, efficiency – Fan laws, cooling coils and heating coils, sizing and off design performance - Cooling and dehumidifying coil, dry and wet, sizing, performance.

Unit II

4: Heat Transfer 3 hrs

Heat transfer in wall and roof, sol-air temperature, insulation, cooling load temperature difference -Fenestration, types of glass, sun shade, shading coefficient, maximum radiation, cooling load factor

5: Cooling load and heating load estimation 7 hrs

Thermodynamics of human body and mathematical model, Human comfort chart, Design conditions, outdoor, indoor - External load, wall, roof, glass - Internal load, occupancy, lighting, equipments - Ventilation, air quantity, loads - Load estimation methods. Vapour transfer in wall, vapour barrier, load estimation basics.

Introduction to AutoCAD REVIT software

6: Air distribution, diffusion and Ventilation 6 hrs

Ducts, types, energy equation for pipe flow, friction chart, methods of sizing, air distribution systems, ADPI, outlet/inlet selection.

Need, threshold limits of contaminants, estimation of ventilation rates, decay equation, air flow round buildings, Natural, wind effect, stack effect, combined effect - Mechanical, forced, exhaust, combined - Displacement ventilation

Unit III

7: Ventilation system design 4 hrs

Exhaust ducts, filters, blowers, hoods, chimney, etc.

8: Industrial ventilation 4 hrs

Steel plants, car parks, plant rooms, mines, etc.

Text Books

1. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler, Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, July 2004,

2. W P Jones, Air Conditioning Engineering ELBS 3rd edn Edward Arnold (Publishers) ltd. London.

Reference Books:

- 1. Harris, Modern Air Conditioning Practice 3rd Edn McGraw Hill Book Company
- 2. S. N. Sapali, Refrigeration and air conditioning 2ndEdn, PHI learning pvt ltd, Delhi 2016
- 3. C P Arora, Refrigeration and air conditioning 3rdedn

Program: Bachelor of Engineering		Semester: VI
Course Title: Green Hydrog	gen	Course Code: 22EMEE306
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	· ·

1. Introduction: 7 Hrs

Global Warming – Green House Gas Emissions – Introduction to hydrogen – Primary Sources of Hydrogen – Colours of Hydrogen – Water Splitting Reaction. Wide range of applications – Global Hydrogen Demand – Characteristics of Hydrogen

2. Fundamentals of Electrolysis: 8Hrs

Electrochemical water splitting – Electrolyzer or electrolytic cell – Thermodynamics – Thermodynamic functions of state – Water splitting cells: General characteristics – Faraday's law – Faradaic efficiency – Energy efficiency of water electrolysis cells, Classification of Electrolysers

Unit II

3. Fuel Cells:7 Hrs

Working principle of fuel cells, Fuel cell thermodynamics, fuel cell electrochemistry - Nernst equation, Electrochemical kinetics, Butler-Volmer equation, performance evaluation of fuel cells, Types of Fuel Cells: AFC, PAFC, SOFC, MCFC, DMFC, relative merits and demerits. Fuel cell characterization: In-situ and ex-situ characterization techniques, I-V curve, frequency response analyses; Fuel cell system integration

4. Application of Fuel Cells 8Hrs

Fuel Cell usage for domestic power systems, large scale power generation, Automobile, environmental analysis. Future trends in fuel cells, portable fuel cells, laptops, mobiles, submarines.

Unit III

5. Hydrogen storage and safety 6Hrs

Physical and chemical properties, general storage methods, compressed storage-composite cylinders, metal hydride storage, carbon based materials for hydrogen storage. Hydrogen safety aspects, backfire, pre-ignition, hydrogen emission NOx control techniques and strategies, Hydrogen powered vehicles.

6. Future trends in fuel cells: 4Hrs

Need of green hydrogen technology- Solution to overcome Global warming- Efforts to be taken

Text Books

- 1. Viswanathan, B., M AuliceScibioh, Fuel Cells Principles and Applications, Universities Press, 2006.
- 2. A.J. Bard, L.R.Faulkner, Electrochemical Methods, 2ndEdn., John Wiley & Sons, 2001.
- 3. Fuel Cell Handbook, EG&G Technical Services, Inc., 7thEdn., NETL, West Virginia, 2004
- 4. Ryan O Hayre, Suk-Won Cha Whitney Colella, Fuel Cell Fundamentals, 2ndEdn., John Wiley & Sons, 2018.
- 5. FrannoBarbir, PEM Fuel Cells: Theory and Practice, 2nd Ed. Elsevier/Academic Press, 2013.
- 6. Xianguo Li, Principles of Fuel Cells, Taylor & Francis, 1stEdn., 2005

Reference Books:

-	: Bachelor of Engineer	ing	Semester: VI		
Course T	itle: Advanced CAE- II		Course Code: 19EME	E304	
L-T-P: 0-	0-3	Credits: 3	Contact Hours: 6 Hrs	/week	
ISA Mar	ks: 80	ESA Marks: 20	Total Marks: 100		
Teaching	g Hours: 80	Examination Duration: 2 Hrs			
Experiment wise plan					
Serial		Details	Details	No. of	
No.				Sessions	
1	Finite Element Metho	ods: A conceptual introduction,	Demonstration	01	
	Failure criteria of mat	terials			
2	Ansys workbench		Exercise/Tutorial	02	
	Getting start	ed with Ansys			
	Interacting v	vith panels			
	Case Study: Beam, P	neumatically Actuated PDMS			
	Fingers, Spur Gears a	nd Micro gripper etc.			
3	Design Modeler		Exercise/Tutorial	02	
	Geometry clean-up t	ools: De-features, Projection.			
	Case Study: Bar, Bea	m, Triangular plate.			
4	Case study on One d	imensional/Two	Exercise/Tutorial	03	
	dimensional/Three d	limensional components			
	ID: Rod, Bar,	Link, Spring, Beam			
	2D: Bellows J	oints, Gearbox etc.			
	3D: Beam bra	acket, Cover of pressure cylinder,			
	lifting fork ar	id LCD display support.			
5	Convergence study in		Exercise/Tutorial	03	
		or 1D/2D/3D elements,			
		of 2D and 3D Solid Elements			
	Pneumatic fii	-			
	Cover of pres	-			
6	Case study on Static	-	Exercise/Tutorial	03	
	Refrigerator				
	Shell –Auton	notive panels (Fender, Bonnet)			
	Assignments				
	Wooden chai	r			
7	Crain hook			02	
7	Case study on Modal	•	Exercise/Tutorial	02	
	Compact disk				
		structures- Bed, Column.			
	 Guitar string 				
	Assignments Human skele 	ton			
	 Fuman skele Car chassis 				
	 Car chassis Engine housi 	ng			
8	Case study on Structu	-	Exercise/Tutorial	03	
0	► Lifting fork	arai uynannic Analysis	Exercise/ Intorial	03	
	 Ball and rod 				
		pressor in Refrigerator			

	Assignments		
	Assignments		
	Leaf spring		
	Steering wheel		
0	Railway track	Fuencies /Testevial	04
9	Case study on Nonlinear analysis	Exercise/Tutorial	04
	Geometry, Material and Contact analysis		
	Fisher rod (Geometry)		
	snap lock (Material)		
	Translational joint (Contact)		
	Assignments		
	Gasket (Contact)		
	Advanced metal plasticity (Material)		
	Visco-plasticity (Material)		
10	Case study on Explicit Dynamics	Exercise/Tutorial	01
	High-Speed Impact: Bird Crash		
11	Case study on Buckling and Stress stiffening	Exercise/Tutorial	02
	> 3D Truss		
	Beam Bracket		
	Assignments		
	 Machine column (Milling/ Drilling) 		
	Dovetail guide way		
12	Case study on Thermal analysis	Exercise/Tutorial	02
	Steady state thermal analysis, Transient thermal		
	analysis		
	 Heat exchanger 		
	 Fin 		
	Assignments		
	PCB Panel		
	 Telephone/power cables 		
13	Case study on Fatigue Analysis	Exercise/Tutorial	04
15	Stress based approach, Strain based approach		04
	 Connecting rod 		
	> Fin		
	Assignments		
	Radial tire		
	Battery of laptop/mobile	2	
14	Case study on Sub-Modeling	Demo	01
	> Motor cover		
15	Case study on Multi Body Dynamics (MBD)	Exercise/Tutorial	03
	Applications of Four bar mechanism		
	Sun planet gear mechanism		
	Assignments		
	Power cylinder in a diesel engine		
	Screw jack		
16	Analysis of Composite	Exercise/Tutorial	01
	Applications on automotive components		
	(fender, hood, dashboard)		
	Applications on aerospace components (wings,		
	window panels, tale)		
	Assignments		
	· · · · · · · · · · · · · · · · · · ·		

	Polymer matrix composite		
	Metal matrix composite		
17	Case study on Optimization	Exercise/Tutorial	01
	Triangular plate		
	Flexible gripper		
	Assignments		
	Electronic Fuse		
	Radiating system		
	Tractor trailer		
18	Case study on Couple Field Analysis	Demo	02
	 Electromagnetic-thermal (Induction heating) 		
	 Electromagnetic-thermal-structural (Peltier coolers) 		
	 Electrostatic-structural, electrostatic-structural- fluidic (MEMS) 		
Text Boo	<s< td=""><td>·</td><td></td></s<>	·	
1. NitinGhokale, Practical finite element analysis, Finite to infinite, 2008.			
Referenc	e Books:		
	then, Xiaolin_ Liu, Yijun-Finite Element Modeling and Simul Press (2014)	ation with ANSYS Work	bench-CRC

2. ErdoganMadenci, Ibrahim Guven (auth.)-The Finite Element Method and Applications in Engineering Using ANSYS[®]-Springer US (2015)

3. Barbero, Ever J.-Finite Element Analysis of Composite Materials Using ANSYS®-CRC Press (2013)

Program: Bachelor of Engineering		Semester: VI
Course Title: PLM -Technic	al	Course Code: 19EMEE305
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 74	Examination Duration: 2 hrs	

1. Fundamentals: 10 Hrs

Introduction to ENOVIA Components: Matrix Navigator, Business Modeler, System Manager, MQL Business Objects Attribute, Type, Relationship, Policy User Management: Person, Group, Role, Association Document Management: Files and File Format, File Check-in and Check-out Icon Mail Automating Processes: Triggers & JPOs Vaults & Stores Introduction to 3DEXPERIENCE ENOVIA Modules ENOVIA Architecture ENOVIA Licensing

2. Installation: 8 Hrs

Difference between CAS & No-CAS Setup Installation Procedure for No-CAS Mode: Installation of Database (SQL Server), Creation of Tables & User in Database, Installation of Studio Modelling Platform, Installation of 3DSpace, Installation of ENOVIA Modules, No-CAS Deployment of ENOVIA, Post Installation Configurations, Working with ENOVIA Services

3. Business Modeler: 10 Hrs

Attribute: Attribute Types & Ranges Dimension Type Policy: Policy States, Access, Signature User Management: Person, Role, Group, Association Relationship Interface

4. Matrix Navigator: 9 Hrs

Search Business Objects Create Business Objects Modify & Delete Business Objects Connect Business Objects Expand Business Objects View Business Object Basics & Attributes Promote & Demote Business Object Business Object File Check-in and Check-out Business Object Signature Approvals

5. MQL: 10 Hrs

a. Queries for Admin Objects: List, Create, Modify Queries for Business Objects: temp query, print, expand, add, delete, connect, disconnect, promote, demote, eval expression Help Commands

Schema/Data Model: Understanding ENOVIA OOTB Schema Model: PnO, Project Management, Common Document Model Schema Design Symbolic Names & Registration Understanding ENOVIA Access Precedence Auto-Naming Configuration

6. UI Configuration: 8 Hrs

a. Command Menu Categories/Tree Menu Portals & Channels Inquiry Tables: Flat Tables & Structure Browser Tables Editable Tables Settings for Table Columns Web Forms Settings for Web Form Fields Configuration of Create, Edit & View Business Object Details using Web Form

7. ADK: 5 Hrs

Understanding ENOVIA Business Object & Domain Object classes ENOVIA String List & Map List classes ENOVIA APIs for Business Object Creation, Modification, Deletion ENOVIA APIs for business object querying, for getting business object details, for getting the connected business objects & their details

8. JPOs: 4 Hrs

Creating JPOs Exporting & Importing JPOs JPO Macros JPO Method Invocation from JSP, from JPO and from UI Component settings JPO Compilation & Debugging

9. Triggers: 4 Hrs

Trigger Configuration in Policy Creation of OOTB Trigger objects Understanding OOTB Events Understanding check, override and action triggers Disabling Triggers

10. Data Model Customization: 6 Hrs

a. Understanding Unified Typing Principles Specialize Data Model: Packages, Types & Customer

Extensions Administrate Data Model Importing & Exporting Packages.

Reference Books

1. Guide to the Project Management Body of Knowledge (PMBOK Guide), Sixth Edition and Agile Practice Guide Bundle by: Project Management Institute

Reference Manuals:

- 1. Studio Modeling Platform: Business Modeler Guide3DEXPERIENCE R2018x
- 2. Studio Modeling Platform: Embedding MQL Guide3DEXPERIENCE R2018x
- 3. Studio Modeling Platform: Matrix Navigator Guide3DEXPERIENCE R2018x
- 4. Dassault Systems Studio Customization Toolkit 3DEXPERIENCE R2018x
- 5. Dassault Systems Documentation 3DEXPERIENCE R2018x

Program: Bachelor of Engineering		Semester: VI
Course Title: Biomechanics		Course Code: 22EMEE307
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6Hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 80	Examination Duration: 3Hrs	

1. Introduction and Fundamentals 14 Hrs

What are Biomechanics? Anatomical Concepts in Biomechanics, free-body diagrams and equilibrium; linear and angular kinematics, kinetic equation of motion, work and energy method, application to biological systems: stress, strain, Modulus, strain energy, tension, compression, torsion, bending, buckling.

2. Tissues 14 Hrs

Animal tissues and plant tissues. Classification of animal tissues-hard tissue, soft tissue, properties of plant and animal tissues according to mechanics view point, Structure, Function, composition, material properties and modeling of tissues, Plant tissues – vascular bundles – xylem and phloem. Continuum Mechanics Concepts in Modeling of large deformation, Finite Element Modeling.

3. Joints and Movements 5 Hrs

Classification of joints, forces and stresses, biomechanical analysis joints, Gait, Joint replacement and reasons, Finite Element Modelling.

4. Biofluid mechanics 5 Hrs

Flow properties of blood and others, Fluid flow in plants, Dynamics of fluid flow in the biological system – modeling and experimental approaches, Measurement/Estimation of In-vivo elasticity of fluid transporting vessels.

Content – Practical (Hands-on) 42 Hrs

The below mentioned parameters are executed in experimental/analytical/simulation form. Tools used: Rhino 7, ANSYS Workbench, Material Studio or J-Octa. To determine the -

- 1. Tensile properties of a material (root or bones or plants or others).
- 2. Bending properties of a material (root or bones or plants or others).
- **3.** Hardness properties of a material.
- **4.** Torsional/shear properties of a material
- 5. Buckling properties of a material
- 6. Energy absorbed and toughness of a material
- 7. Wear properties of material and different combination of material
- 8. Ground reaction forces during normal walking or running
- **9.** Finite Element Modeling and analysis of hard tissue and soft tissue (examples: Bone, ligaments or muscles)
- **10.** Fluid flow through the cardiovascular system: Simple modeling and analysis

Text Books

- 1. Basic Biomechanics of the Musculoskeletal System. M. Nordin and V. H. Frankel, publisher-Lippincott Williams and Wilkins, 2012.
- 2. Biomechanics: Mechanical Properties of Living Tissues. Y. C. Fung, Springer, Second edition, 2007

Reference Books:

- 1. Plant Biomechanics: An engineering approach to plant form and function, K. J. Niklas, University of Chicago Press, 1992.
- 2. Fundamentals of Biomechanics: Equilibrium, Motion and Deformation, Ozkaya, Nordin, Goldsheyder and Leger. Third edition, Springer, 2014.
- 3. Fundamentals of Biomechanics, R. L. Huston, CRC Press, 2013.

Prog	ram: Bachelor of Engineering	5	Semester: VI	
Course Title: Vehicle Structure an		d Design Optimization	Course Code: 19EMEE	301
L-T-P: 0-0-3 ISA Marks: 80		Credits: 3	Contact Hours: 6Hrs/v	week
		ESA Marks: 20	Total Marks: 100	
Teac	hing Hours: 80	Examination Duration: 2	Hrs	
SI. No	Content		Teaching Hours	
1	Brief explanation of different types of Loads and its effect;Different types of stresses- Static and Thermal, Different types of beams, Struts and Columns, thick and thin cylinders;			02
2	Understanding vehicle structure based on application; (e.g. 3box, load body and chassis)			04
3	Choices for Preparation of	/irtual Model (1D, 2D, 3D re	epresentation);	03
4	Importance of Joinery;			02
5	Common performance mea	asures for vehicle structures	; (Stiffness, Modal, Durability)	03
6		sumptions; (e.g. nominal ar		02
7	Baseline data; (Initial collection of data which serves as a basis for comparison with the subsequently acquired data.)			02
8	Quality control in virtual environment;			03
9	BIW refers to the body she	hite) is a stage in automoti Il design of an automotive p	ive design and manufacturing. product such as cars. It is just a s, engines, chassis or any other	05
10	Understanding effect of thermal loads on structure;		02	
11	-	pute life based on stress res	sults;	02
		Hands on Session	,	
1	Demonstrate importance of geometric parameters on performance of structure		05	
2	-	f cross members on perform	-	05
		PART B		
		(Design Optimization)		
1	Different Industries, CAE a	nd the Design Cycle, The ir ign? Optimization terminol	ign Practice, Characteristics of npact of optimization on CAE, logy in a nutshell, Finding an	02
2	What is optimization in the context of EV structure;		02	
3	Different types of design optimization;		02	
4	How to plan and approach giving design guidance;			02
5	What is concept level design guidance (generative designs);			03
6	How to handle design guidance at a detailed design stage;			03
7	Examples - design guidance	-	<u> </u>	04
8	Examples - design guidance			04
9	What is MDO, its application (Medium density overlay-N	n; /IDO is produced with a hig bonded to one or both side	sh-quality thermosetting resin- es under heat and pressure to	02

KLE Technological University Creating Value, Leveraging Knowledge

10	Watch-outs during design guidance process;	02	
11	Examples - design guidance for NV & crash attribute;	04	
	Hands on Session		
12	Optimize front control arm of vehicle for all its performance criteria. FAW up by 10%	05	
13	Optimize B-Pillar for roof crush if GVW goes up by 20% due to electrification Effect of wheel base increase on chassis stiffness and how to bring it back, Section optimization using morphing.	05	
Text E	Books		
2. 3. 4. 5. 6. /	Dr. N.K. Giri, Automotive Mechanics, 8 th Edition, 2008, Khanna Publication, New Delhi. Practical Aspects of Structural Optimization, Altair University, 3 rd Edition. Robin Hardy, Iqbal Husain, "Electric and Hybrid Vehicles". CRC Press, ISBN 0-8493-1466-6 Ron Hodkinson and John Fenton, "Lightweight Electric/ Hybrid Vehicle Design". SAE Inter ohn M. Miller, Propulsion Systems for Hybrid Vehicles" Institute of Electrical Engineer SBN0 863413366. Automobile Electrical and Electronic systems, Tom Denton, Third Edition, 2004, SAE Inter SAE ISBN 0 7680 147 2, Society of Automotive Engineers. Inc 400 common wea Warrendale, PA 15096-0001 USA.	national s, London, ernational,	
	ence Books:		
PROJ			
	Part A		
SI. No	tive: To carry out Baseline Performance, Virtual Testing and Design Countermeasures		
01			
01	Battery case for EV; Motor compartment / Passenger compartment - improve performance;		
02	Part B		
Obier	tive: To Provide design guidance		
SI. No			
01	Battery case for EV (Metal vs Composite);		
02	Motor compartment / Passenger compartment - improve performance;		

Program: Bachelor of Engineering		Semester: VI	
Course Title: Machine Learning Applications		Course Code: 19EMEE307	
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 80	Examination Duration: 2 Hrs		
	Unit I		
1. Unsupervised Learning 27Hrs			
Refresher week, Introduction to DBSCAN, Hierarchical Clustering.	Unsupervised Learning, Clusterir	ng Analysis: K-Means, K-Medoid,	
, <u> </u>	Unit II		
2. Introduction to Deep Learning	Frame-Work 18Hrs		
Introduction to DL, Exploring the	popular DL frameworks, Getting star	rted with TensorFlow, Introduction	
to Keras, Setting up the environme	ent.		
3. Introduction to Deep Neural Network (DNN) 21 Hrs			
Introduction- What is Deep Learn	ing, Why Deep Learning and Why r	now, Mathematical building blocks	
of NN, Examples on Regression, Classification.			
Unit III			
4. Deep Learning in practice 14	łrs		
Introduction to Convnets, Understanding Recurrent NN, Examples			
Text Books			
1. Deep Learning, Ian Goodfell			
2. Trevor Hastie, Robert Tibshirani, and Jerome Friedman, "The Elements of Statistical Learning: Data			
Mining, Inference, and Prediction", Springer, 2017			
3. Deep Learning with Python, Francois Chollet			
Reference Books:			
-	1. Andrew Ng, "Machine Learning Yearning", <u>https://www.mlyearning.org/</u> .		
	2. Michael Nielsen, "Neural Networks and Deep Learning",		
http://neuralnetworksandd	eeplearning.com/.		

Program: Bachelor of Engineering		Semester: VII
Course Title: Operations Researc	h	Course Code: 15EMEC401
L-T-P: 3-1-0	Credits: 4	Contact Hours: 5 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

Unit I

1. Introduction to Operations Research 3 Hrs

System orientation, Use of interdisciplinary teams in OR, Necessity of OR in business and industry, Scope of OR in modern management, OR and Decision making

2. Linear Programming 12 Hrs

Formulation, Identification of decision variables, Constructing Objective Functions and Constraints, Assumptions, Practical Examples, Methods of Solution, Graphical Method, Simplex method (Big M and 2-phase methods), By computer, Examples

Unit II

3. Duality Theory and Sensitivity Analysis 7 Hrs

Duality theory, Existence of Dual of a LP problem, Economic interpretation of duality Primal Dual relationships in formulation and their solutions, Sensitivity Analysis or Post Optimality Analysis, Dual Simplex Method, Changes affecting feasibility, Changes affecting optimality, Examples

4. Transportation Models 8 Hrs

The transportation algorithm, Formulation as a LP problem, Determination of initial solution, Stepwise improvement to obtain optimal solution, Special cases such as multiple, unbalanced, degeneracy etc. The assignment model, Formulation as a LP problem, The Hungarian method of solution, Examples

Unit III

5. Network Models 5 Hrs

The maximal flow problems, The shortest route problem, The minimal spanning tree problem, Critical Path Method (CPM) and Program Evaluation & Review Technique, Network representation of simple projects, Critical path Crashing of project duration, Examples

6. Game Theory 5 Hrs

Formulation of games, Two-person zero sum game, Dominance property, Games with and without saddle point, Graphical solutions (2 x n, m x 2 game)

Text Books

- 1. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 9th Edition, MGH, India, 2017.
- 2. H.A. Taha, Operations Research: An Introduction, 10th Edition, Pearsonl, 2017.

Reference Books:

- 1. Vohra N. D, Quantitative Techniques in Management, 5th Edition, MGH Higher Ed., 2017
- 2. R. Panneerselvam, Operations Research, 2nd Edition, Phi Learning Pvt. Ltd, 2009.

Program: Bachelor of Engineering		Semester: VII
Course Title: Design of Thermal Systems		Course Code: 15EMEC402
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

Unit I

1. Heat exchangers Classification and Selection: 5 Hrs

Introduction, Recuperation and Regeneration, Transfer process, Geometry and Construction, - Tubular Heat Exchanger, Plate Heat Exchanger, Extended Surface heat exchanger, Heat Transfer Mechanisms, Flow arrangements, Applications and Selection of Heat Exchangers.

2. Design of Shell and Tube heat exchanger: 10 Hrs

Construction of shell and tube exchanger, specifications and classification of S&T Heat Exchanger, some Typical operating limits for heat exchangers of S&T Type, Design of Shell and Tube Heat Exchangers.

Unit II

3. Condensers: 5 Hrs

Classification of condensers, various types of condensers and their applications, Shell and tube condensers: Analysis and design, special consideration in Reflux Condensers: Flooding, Condensers for mixtures, Design of shell and tube Exchangers, compact condensers, air cooled condensers, direct contact condensers, numerical problems

4. Modeling of Thermal Equipment: 6 Hrs

Counter flow heat exchanger, Evaporators and Condensers, Heat exchanger effectiveness, Effectiveness of a counter flow heat exchanger, NTU, Pressure drop and pumping power, Numerical Problems.

5. Optimization: 4 Hrs

Mathematical representation of optimization problems, A water chilling system, Optimization procedure, Setting up the mathematical statement of the optimization problem.

Unit III

6. Lagrange Multipliers: 5 Hrs

The Lagrange multiplier equations, unconstrained optimization, Constrained optimization.

7. Dynamic Programming: 5 Hrs

Characteristic of the Dynamic programming solution, Apparently constrained problem, Application of Dynamic programming to energy system problems.

Text Books

- 1. W.F. Stoecker, Design of Thermal Systems, 3 ed., MGH, 1989.
- 2. Sarit K. Das., Process heat transfer, Narosa Publishing House 1st Edition, 2005
- 3. SadikKakac, Hongtan Liu, Heat Exchanger Selection, Rating and Thermal Design, 2 ed., CRC, 2002.

- 1. YogeshJaluria, Design and Optimisation of Thermal Systems, 2nd ed., CRC Press, 2008
- 2. Hodge B.K., Analysis and Design of Thermal Systems, 1 ed., PHI, 1990.

Program: Bachelor of Engineering		Semester: VII
Course Title: I C Engines		Course Code: 19EMEC401
L-T-P: 2-0-0	Credits: 2	Contact Hours: 2Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 26	Examination Duration: 3 Hrs	
Unit I		

1. Introduction to I C Engines 5 Hrs

Internal Combustion Engine Classification, Operating Cycles, Spark Ignition and Compression-Ignition Engines.

Combustion in Spark Ignition Engines

Ignition limits, Normal combustion, Thermodynamic Analysis of SI Engine Combustion - stages, ignition lag, and effect of engine variables on ignition lag Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations and flame propagation phase, detonation, Abnormal Combustion: Knock Fundamentals and fuel factors, Factors affecting knock.SI engine combustion chambers.

2. Combustion in Compression Ignition Engines 5 Hrs

Types of Diesel Combustion Systems, Direct and Indirect-Injection Systems, Comparison, Combustion Efficiency, Normal combustion – stages, delay period, variables affecting delay period. Diesel knock, comparison between diesel and petrol engine knocks. Cl engine combustion chambers, Fuel spray behavior. HRR analysis.

Unit II

3. Engine Exhaust Emission Control 5 Hrs

Formation of NOX, HC/CO mechanism , Smoke and Particulate emissions, Green House Effect, Methods of controlling emissions , Three way catalytic converter and Particulate Trap, Emission (HC, CO, NO and NOX) measuring equipments, Smoke and Particulate measurement, Indian Driving Cycles and emission norms.

4. Overall Engine Performance 6 Hrs

Alternate fuels, Operating Variables that Affect SI Engine Performance, Efficiency, and Emissions: Spark Timing, Mixture Composition, Load and Speed, Compression Ratio. Variables that Affect CI Engine Performance, Efficiency, and Emissions: Load and Speed, Fuel-Injection Parameters.

Unit III

5. Recent Trends in IC Engines 5 Hrs

Dual fuel Engine, Common Rail Direct Injection Diesel Engine (CRDI), Homogeneous Charge Compression Ignition Engine (HCCI), Reactivity controlled compression ignition engine (RCCI) Lean Burn Engine, Surface Ignition alcohol CI Engine, VVT engines, Gasoline Direct Injection Engine.

Text Books

- 1. John B Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw-Hill, 1988
- 2. Heinz Heisler, "Advanced Engine Technology", SAE International Publications, USA, 1998
- 3. Patterson D.J. and Henein N.A, "Emissions from combustion engines and their control", Ann ArborScience, publishers Inc, USA, 1978

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill, 2007.
- 2. Gupta H.N, "Fundamentals of Internal Combustion Engines", Prentice Hall of India, 2006.
- 3. Ultrich Adler, "Automotive Electric / Electronic Systems", Published by Robert Bosh GmbH, 1995.

Prog	ram: Bachelor of Engineering		Semester: VII
Course Title: Thermal Engineering Lab Course Code: 19EMEP4		Course Code: 19EMEP401	
L-T-P: 0-0-1 Credits: 1 Contact Hours: 2Hrs/we		Contact Hours: 2Hrs/week	
ISA N	ISA Marks: 80 ESA Marks: 20 Total Marks: 100		Total Marks: 100
Teac	eaching Hours: 24 Examination Duration: 2 Hrs		
1. Fl	uid mechanics and hydraulic	machines	
i.	To obtain the performance ch	naracteristics of centrifugal blower	
ii.	To study the effect of speed of	on the performance of centrifugal pu	Imp
iii.	To study the effect of speed /	gate opening on the performance o	f Pelton turbine
iv.	To study the effect of speed /	gate opening on the performance o	f Francis turbine
2. He	at transfer		
i.	To determine the emissivity	of given surface	
ii.	To determine the thermal of	conductivity of metal bar and to stu	idy the effect of temperature or
	thermal conductivity		
iii.	ii. To study the performance of pin fin		
iv.	To study the performance of	f vapour compression refrigeration (VCR) system
3. I C	Engines		
	To study the performance of	C C	
ii.	To obtain the performance of	characteristics of multicylinder engin	e using Morse test
iii.	iii. To study effect of engine operating variables (Injection pressure/ injection timing/ compression ratio)		
Mate	erials and Resources Required	1:	
1.	White, F.M., Fluid Mechanics	s, 5ed., McGraw Hill International, 20	003
2.			
3.			
4.			
5.			
6.	Manuals: Lab manual prepar	ed by the Department	
Refe	rence Books:		

Program: Bachelor of Engineering		Semester: VII
Course Title: Senior Design Project		Course Code: 20EMEW401
L-T-P: 0-0-6	Credits: 6	Contact Hours: 6 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

About the Course:

Senior Design project course uses User experience design (UX) approach to solve complex engineering problems. In this course students are challenged to solve frontier complex engineering problems in the field of smart manufacturing, green engineering, and Design engineering and advanced materials. The objective of the course is to infuse lifelong qualities in students such as research, design thinking, innovation and entrepreneurial qualities. After this course students are capable to convert customer pain points into business solution.

Program: Bachelor of Engineering	
	Course Code: 15EHSA401
Credits: Audit	Contact Hours: 32Hrs/week
ESA Marks: 50	Total Marks: 100
Examination Duration: 3 Hrs	
	Credits: Audit ESA Marks: 50

Unit – 1

Chapter No. 1 Features of Indian Constitution 4 Hrs

Features of Indian Constitution, Preamble to the constitution of India, Fundamental rights under Part III – details of Exercise of rights, Limitations & Important cases. Berubari Union and Exchange of Enclaves, KesavanandBharati vs. UOI, Maneka Gandhi vs. UOI, Air India Ltd. vs. NargeesMeerza, T.M.A. Pai Foundation v. St. of Karnataka, M.C. Mehta vs. UOI etc.,

Chapter No. 2 Relevance of Directive principles of State Policy 3Hrs

Relevance of Directive principles of State Policy under Part IV, Fundamental duties & their significance. SarlaMudgal v. UOI

Chapter No. 3 Union 4 Hrs

Union – President, Vice President, Union Council of Ministers, Prime Minister, Parliament & the Supreme Court of India.

Chapter No.4 State 2Hrs

State – Governors, State Council of Ministers, Chief Minister, State Legislature and Judiciary.

Chapter No. 5 Constitutional Provisions for Scheduled Castes & Tribes 2Hrs

Constitutional Provisions for Scheduled Castes & Tribes, Women & Children & Backward classes, Emergency Provisions.

Chapter No. 6 Electoral process 2Hrs

Electoral process, Amendment procedure, 42nd, 44th and 86th Constitutional amendments.

Unit – 2

Chapter No. 7 Scope & Aims of Engineering Ethics 5Hrs

Scope & Aims of Engineering Ethics: Meaning and purpose of Engineering Ethics, Responsibility of Engineers, Impediments to responsibility, Honesty, Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas Tragedy, Titanic case.

Chapter No. 8 Intellectual Property Rights 3Hrs

Intellectual Property Rights (IPRs)- Patents, Copyright and Designs

Chapter No. 9 Ethical perspectives of professional bodies 3Hrs

Ethical perspectives of professional bodies- IEEE, ASME, NSPE and ABET, ASCE etc.

Unit – 3

Chapter No. 10 Effects of human activities on environment 2Hrs

Effects of human activities on environment - Agriculture, Housing, Industry, Mining, and Transportation activities, Environmental Impact Assessment, Sustainability and Sustainable Development.

Chapter No. 11 Environmental Protection 2Hrs

Environmental Protection – Constitutional Provisions and Environmental Laws in India.

Text Books (List of books as mentioned in the approved syllabus)

- 1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005
- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publicaitons, Allahabad, 2010.

3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003

References

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Program: Bachelor of Engineering		Semester: VII
Course Title: Mechanics of Composite Materials		Course Code: 15EMEE401
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

Unit I

1: Introduction to Composite Materials 5 Hrs

Introduction, Matrix materials-polymers, metals and ceramics; Reinforcements, Interfaces-wettability, interactions at the interface, types of bonding at the interface, optimum interfacial bond strength.

2: Polymer Matrix Composites 5 Hrs

Types, characteristics, processing of PMCs, Layup and curing, fabricating process, open and closed mould process, hand layup techniques; structural laminate bag molding, production procedures for bag molding; filament winding, pultrusion, pulforming, thermo-forming, injection molding, blow molding.

3: Metal and Ceramic Matrix Composites 5 Hrs

Types of MMCs, base metals selection; important metallic matrices; processing-liquid state and solid state processes; interfaces in MMCs; Need for production of MMC's and its applications; Types of CMCs, processing of CMCs-cold pressing and sintering, hot pressing, reaction bonding processes, liquid infiltration, directed oxidation, in-situ chemical reaction techniques, sol-gel and polymer pyrolysis, applications of CMCs.

Unit II

4: Macro Mechanics of a Lamina 8 Hrs

Hooke's law for different types of materials, Number of elastic constants, Derivation of nine independent constants for orthotropic material, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, engineering constants - Invariant properties. Numerical problems.

5: Micro Mechanics of a Lamina: 7 Hrs

Introduction, volume and weight fractions, Assumption and limitations of micromechanical analysis, Elastic properties of a lamina, longitudinal strength and stiffness, Transverse young's modulus, major Poisson's ratio and in-plane shear modulus. Problems on micromechanical analysis. Numerical problems.

Unit III

6: Macro Mechanics of Laminate 5 Hrs

Macro Mechanics of Laminate: Introduction, Laminate code, Stress–Strain Relations for a Laminate, Classical Lamination theory, assumptions of CLT, Stress- Strain equation and variation in a laminate, force and moment resultants related to midplane strains and curvatures, Numerical problems.

7:Applications: 5 Hrs

Aircrafts, missiles, Space hardware, automobile, Electrical and Electronics, Marine, Recreational and sports equipment, future potential of composites.

Text Books

Krishan K. Chawla, Composite Materials - Science and Engineering, 3rd Edition, Springer, 2012.
 Robert M. Jones, Mechanics of Composite Materials, 2nd Edition, Tailor & Francis Inc. 1999.

Reference Books:

1.D. Hull and T. W. Clyne, an Introduction to Composite Materials (Cambridge Solid State Science Series), 2nd Edition, Cambridge University Press, 1996.

2. Autar K. Kaw, Mechanics of Composite Materials, 2nd Edition, CRC Press, Taylor and Francis, 2006.

Program: Bachelor of Engineering		Semester: VII
Course Title: Design of Automotive Power Train		Course Code: 15EMEE402
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1: Vehicle Performance Parameters 5 Hrs

Vehicle drag, power for propulsion, resistances to vehicle motion, traction and tractive effort, relation between engine revolutions and vehicle speed, road performance curves(acceleration, grade ability and drawbar pull), numericals.

2. General Considerations in Engine Design 5 Hrs

General Design Consideration, Selection of type: Process, Cycle, Number of Cylinders, Arrangement of Cylinders, Single and Double acting, Engine Speed, Piston Speed, Stroke to Bore Ratio.

3. Cylinder, Cylinder Head and Piston 5 Hrs

Function, construction, materials and design of cylinder, cylinder head and piston, piston pin and piston rings.

Unit II

4. Connecting Rod and Crankshaft 5 Hrs

Function, construction, materials and design of connecting rod, design of crankshaft and its types.

5. Flywheel 5 Hrs

Function, construction, material, types. Stresses in flywheel rim and arms. Design of flywheel.

6. Power Transmission- Manual Gearbox 5 Hrs

Necessity of gear box, Sliding mesh gear box, Constant mesh gear box, Synchromesh gearbox, gear synchronization and engagement.

Unit III

7. Power Transmission- Automatic Gearbox 5 Hrs

Architecture, fundamental design and operation principles of Torque convertors, Epicyclicgeartrains and Dual Clutch Transmission.

8. Power Transmission- Drive Shaft, Final Drive and Differential 5 Hrs

Construction & types of propeller/drive shafts, Final drive, Differential-principle, open and non-slip differentials, differential lock. Electronic limited slip differential. Four wheel drive arrangements.

Text Books

1. Dr. N.K. Giri, Automotive Mechanics, 8th Edition, Khanna Publication, New Delhi, 2008.

2. Sharma and Aggarwal, Machine Design, 12th Edition, S.K. Kataria& Sons, New Delhi, 2012.

- 1. Heinz Heisler, Advanced Vehicle Technology, 2nd Edition, Butterworth Heinemann, 2002.
- 2. Heywood, John B. Internal Combustion Engine Fundamentals, McGraw-Hill, New York 1988.

Program: Bachelor of Engineering		Semester: VII	
Course Title: Design and Analysis of Experiments		Course Code: 15EMEE403	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 Hrs		
	Unit I		
1. Introduction 4 Hrs			
	gn of Experiments, Experimental D	esign Techniques, Applications of	
Experimental Design.			
2.Taguchi's Approach to Quality			
	nd Quality loss function, Noise Fa	ctors and Average Quality Loss,	
Exploiting Non-Linearity, Classifica	tion of Parameters, Exercises.		
3. Analysis of Variance8 Hrs			
Test of Hypothesis using t-test, Z –test, Chi square and F-tests, No-Way and One-Way ANOVA, Exercises.			
Unit II			
4. Full Factorial Design of Experim			
Two-Factor Complete Factorial Experiments, Complete Factorial experiment with Three Factors and 2 ⁿ			
Factorial Experiments, Exercises.			
5. Fractional Factorial Design of Ex	-		
Half Fraction of 2 ² Factorial Experiments, Half Fraction of 2 ³ Factorial Experiments, Half Fraction of 2 ⁴			
Factorial experiments, Exercises.			
6. Robust Design 4 Hrs			
Control Factors and their Levels, Matrix Experiment and Data Analysis Plan, Conducting the Experiment			
using Orthogonal Array and Data a	-		
	Unit III		
7. Response Surface Methodology	4 Hrs		

Central Composite Design and Box-Behnken Design, Case Studies

8.Signal to Noise Ratio 4 Hrs

Relationship between Signal to Noise Ratio and quality loss after adjustment, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Exercises.

Text Books

- 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley and Sons.
- 2. Madhav S. Phadke, "Quality Engineering using Robust Design", PH PTR, Englewood Cliff.
- 3. R. Panneerselvam, "Design and Analysis of Experiments- R PHI Learning Private Limited, New Delhi.

- 1. R. H. Myers and D. C. Montgomery and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 2. Philips.J. Ross, "Taguchi Techniques for Quality Engineering", McGraw Hill, New York.

_	m: Bachelor of Engineeri	-	Semester: VII	
	Title: Dynamics & Durak	-	Course Code: 19E	
L-T-P: 0		Credits: 3	Contact Hours: 6Hrs/week Total Marks: 100	
	rks: 80	ESA Marks: 20		
Teachir	ng Hours: 80	Examination Duration: 2 Hrs		
		PART A		
		(Dynamics of Vehicles)		
SI. No		Content		Teaching Hours
1	Introduction - Kinemati	cs & Compliance in vehicles;		02
2	Introduction to Roads a	nd Loads;		02
3	Introduction to Durabil	ty in industry;		02
4	Data and Assumptions	for multi-body systems - quality cor	ntrol;	03
5	Loads mapping for dow	nstream use with examples;		03
6	Example applications u	sing Multi-Body Dynamic Systems;		03
7	Introduction - Flex Body	/;		02
8	Durability example with	and without Flex body;		03
9	Control systems in Multi-Body;		04	
		Hands on Session		
1	Build a 2/3-wheeler suspension system to carry out K&C		08	
2	Build a 3-wheeler suspe	ension system to carry out loads ext	traction for durability	08
		PART B		
		(Durability of Vehicles)		
1	Conduction, Convection	n, Steady state, Transient flows, Tur	bulence and its	03
	significance			
2	Importance of BTMS, Current state of thermal management in EV		03	
3	Types of battery packs	for xEV		02
4	Heat load calculation for battery packs		02	
5	How to approach desig	n assessment of power pack for the	ermal management	02
6	Importance of data & a	ssumptions (includes baselining)		02
7	Example case of using A	AcuSolve to assess a design		03
8	How to improve the the	ermal performance of a power pack	< design	02
9	Importance of Drag co-	eff for vehicles moving at high spee	eds	02
10	Fast assessment of A-Su	urface design for drag using VWT		02
11	Introduction to therma	I management in electronic circuits		03
		Hands on Session		
1	Assume 2 different des	gns and compare the thermal perfo	ormance	07
-	Prenare 2 vehicle desig	ns (external surface) and compute of	drag	07

5. Ron Hodkinson and John Fenton, "Lightweight Electric/ Hybrid Vehicle Design". SAE International

- 6. John M. Miller, Propulsion Systems for Hybrid Vehicles" Institute of Electrical Engineers, London, ISBN0 863413366.
- 7. Automobile Electrical and Electronic systems, Tom Denton, Third Edition, 2004, SAE International,

SAE IS	BN 0 7680 147 2, Society of Automotive Engineers. Inc 400 common wealth Drive,	
Warrei	ndale, PA 15096-0001 USA.	
Reference E	Books:	
PROJECTS:		
	Part A	
Objective: T	o carry out Dynamic and Durability of different chassis	
SI. No.	Content	
01	Compare durability of conventional ICE chassis with Electric version	
	Part B	
Objective: T	o carry out to analyze the heat produced during EV operation and streamline external	
airflow		
SI. No.	Content	
01	Compute Delta T for a chosen EV battery pack	
02	Improve drag performance of a chosen external vehicle element	

Program: Bachelor of Engineering		Semester: VII
Course Title: Operations Management		Course Code: 15EMEE405
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

Unit I

1. Operations management & operations decision making 8 Hrs

Introduction, importance of operations management in manufacturing and service industries, Competitiveness, Strategy, Productivity, Factors affecting productivity. The environment of operations, Location Planning and Analysis, Characteristics of decisions, framework for decision-making, decision methodology, decision support systems, economic models and statistical models. Numericals

2. Forecasting 4 Hrs

Forecasting objectives and uses, steps in forecasting process, opinion and judgmental methods, time series methods, exponential smoothing, regression and correlation methods, application and control of forecasts. Numericals

3. Aggregate planning and master scheduling 4 Hrs

Introduction- Planning and scheduling, objectives of aggregate planning and Aggregate planning methods, master scheduling objectives, master scheduling methods, Numericals

Unit II

4. MRP and ERP 4 Hrs

Overview: MRP and CRP, MRP: Underlying concepts, System parameters, Benefits and requirements of MRP, MRP logic, MRP Processing, Capacity management, and CRP activities. MRP, MRP-II and ERP,Numericals

5. Scheduling, single machine scheduling & flow -shop & Job shop scheduling12 Hrs

Production activities, PAC objectives and data requirements, concept, measures of performance, SPT rule, Weighted MFT, EDD rule, minimizing the number of tardy jobs. Numerical problems, Johnson's rule for 'n' jobs on 2 and 3 machines. Numericals.

Job-shop scheduling: Types of schedules, heuristic procedure, scheduling 2 jobs on 'm' machines. Numericals

Unit III

6. Lean manufacturing 4 Hrs

Introduction, Japanese concept of continuous improvement (Kaizen), innovation concept of improvement, need for continuous improvement, steps in implementing continuous improvement, 5S principles, Lean Tools, Lean Services, Lean manufacturing history.

7. Just in time- an introduction 4 Hrs

Spread of JIT movement, the new production system research association of Japan, core Japanese practices of JIT, creating continuous manufacture, Enabling JIT to occur, basic element of JIT, benefits of JIT.

Text Books

1. William J Stevenson "Operations Management" McGraw Hill, 2018, 12th Edition

2. Krajewski E. J. and Ritzman, 'Operations Management', Strategy and Analysis, Pearson Edu. 2018.

- 1. Monks, J.G., Operations Management, McGraw-Hill International Edition, 1987.
- 2. Pannerselvam. R., Production and Operations Management, Prentice Hall India, 2003
- 3. Chary, S.N., 'Production and Operations Management', Tata-McGraw Hill, 2004
- 4. Nicholas J. Aquilano, 'Fundamental of Operations Management', Irwin/McGraw-Hill; 4th edition.

Program: Bachelor of Engineering		Semester: VII
Course Title: Supply Chain Manage	ement	Course Code:15EMEE406
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	
Linit I		

Unit I

1: Understanding Supply Chain – 5 Hrs

Meaning of SCM, Supply chain stages, Decision phases in supply chain (SC), Process view of SC, Examples of supply chain, Competitive and supply chain strategies, Achieving Strategic Fit and Expanding Strategic Scope.

2: Supply Chain Drivers and Metrics – 5 Hrs

Drivers of SC performance, framework for structuring drivers, Facilities, Transportation, Information, Inventory, Obstacles to achieve Strategic Fit.

3: Designing the Supply Chain Network -5 Hrs

Role of distribution in SC, Factors influencing distribution network design, Design options for a distribution network, Role of network design in SC, Factors influencing network design decisions.

Unit II

4: Sourcing in Supply Chain – 5 Hrs

Role of sourcing in SC, Supplier scoring and assessment, Supplier selection and assessment, Design collaboration.

5: Transportation in Supply Chain – 5 Hrs

Role of transportation in SC & factors affecting transportation decisions, Modes of transportation and their performance characteristics, Design options for a transportation network, Trade-offs in transportation design, Tailored transportation.

6: Co-ordination in Supply Chain – 5 Hrs

Lack of SC Co-ordination & the Bullwhip Effect, Effect of lack of co-ordination on performance, Obstacles to co-ordination in the SC, Managerial levers to achieve co-ordination, Building a strategic partnership & trust within a supply chain and spot customers.

Unit III

7: Role of Technology in Supply Chain – 5 Hrs

Role of IT in supply chain, Supply chain IT framework, Customer Relationship Management, Internal SCM, SRM.

8: Emerging Concepts in Supply Chain – 5 Hrs

Role of E-Business in SC, E-Business frame work, Reverse Logistics; Reasons, Activities, Role, RFID Systems; Components, applications, implementation.

Text Books

1.Sunil Chopra and Peter Meindl 'Supply Chain Management – Strategy, Planning and Operation,' Il ed 2003, Pearson Education Inc. ISBN: 81-297-0172-3.

2.Douglas Lambert and James Stock, Strategic Logistics Management", ', IV Ed, Irwin MGH ISBN: 0-07-118122-9.

- 1. Michael Hugos, 'Essentials of Supply Chain Management, ', Ed 2003, John Wiley and Sons.
- 2. Robert B. Handfield and Ernest L. Nichols, Supply Chain Redesign-Transforming Supply Chain into Integrated Value Systems, ed 2002, Pearson Education Inc. ISBN: 81-297-0113-8.
- 3. Jeremy F. Shapiro and Duxbury, Modeling the Supply Chain", Ed 2002, Thomson Learning. ISBN: 0-534-37363.
- 4. Kapoor, Marketing Logistics: A Supply Chain Approach", Pearson Education, ISBN-8129702444.

Program: Bachelor of Engineering		Semester: VII
Course Title: Modern Trends in M		Course Code:15EMEE417
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3	Hrs
	Unit I	
1. Systematic Approach for Manu	afacturing Strategy: 4 Hrs	
Seven Losses Regarding Productivi	ty and Profitability, Feasibili	ity Study of Productivity Improvement,
Four Levels of Manufacturing Strat	egy.	
2. Management and Productivity	in Engineering: 8 Hrs	
Definition of Engineering, Manage	ment and Management Eng	gineering, Industrial Engineering and
Productivity, Necessity of Facts and	d Work Measurement.	
Productivity, Purpose of Productiv	ity Improvement, Engineeri	ng Approach for Productivity, Three Levels
of Improvement, Points of Success	ful Productivity, Relationshi	ip of Methods, Performance, and
Utilization to Standard Time.		
3. Concurrent Engineering: 3 Hrs		
· · ·	-	ant factors in concurrent engineering
process, communication models, k		
	Unit II	
4. Continuous Process Improveme		
Introduction, Japanese concept of	•	•
improvement, need for continuous	•	• • •
	•	nuous improvement, standardization,
	, kaizen and management, k	kaizen umbrella, TPM, Six sigma, FMEA and
discussion of few case studies.		
5. Pull Production Systems: 7 Hi		
	· · · ·	l and push system, other types of kanban, ban, a detailed kanban system example,
supplier kanban and sequence sch	-	San, a detailed kanban system example,
supplier kanbarrand sequence sch	Unit III	
6. Quality Management Systems		
Need for ISO 9000 and Other Qual		Quality System – Elements
		uditing, QS 9000, ISO 14000 –Concept,
		Management (OSHAS -18001) standards,
Environmental Management Certi	• •	c
7. Six sigma: 5 Hrs		
	ection for six sigma, six sigm	na problem solving, design for six sigma, six
sigma in service and small organiza		
		sign of experiments, analysis of variances
Text Books		
1.Masaki Imai, 'KAIZEN', McGra	aw Hill International.	
		" Springer Verlag London Limited 2010

2.Shigeyasu Sakamoto, "Beyond World-Class Productivity", Springer-Verlag London Limited 2010.3.Dale H. Besterfield, "Total Quality Management", Pearson Education, Asia.

Reference Books:

1.Richard J. Schonberger, 'Japanese Manufacturing Techniques', the Free Press – Macmillan Publication.

2.James R. Evans and William M. Lindsay, 'The Management and Control of Quality'.

Program: Bachelor of Engineering		Semester: VII
Course Title: Fundamentals ofGas	Turbines	Course Code:15EMEE408
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	

Unit I

1 Principles of Gas Turbine and Applications 4 Hrs

Introduction to turbo machines, history of gas turbines, gas turbine cycles and applications – (Land, Water/Marine and Air/Aero) Components of Gas Turbines (Compressors, Combustors, Turbines, Exhaust systems). Working of Gas Turbines.

2 Compressor 7 Hrs

Types of compressors, (Centrifugal and Axial), relative merits and demerits, Criteria for selecting type of compressors.

Centrifugal Compressors: Principle of operation, work done and pressure rise diffuser, compressibility effects, compressor characteristics and design procedures.

Axial Flow Compressor: Basic operations, elementary theory, factors affecting stage pressure ratio, Blockage in the compressor annulus, effect of compressibility, pre-whirl, supersonic flow, degree of reaction, design process, blade design, calculation of stage performance, off-design performance.

3Fuel System 4 Hrs

Fuel specifications, Properties, Manual and automatic control, Fuel control systems, Fuel spray nozzles, Fuel heating, Effect of a change of fuel, Gas turbine fuels, Fuel requirements, Vapor locking and boiling, Fuel contamination control.

Unit II

4 Combustion System 5 Hrs

Introduction, Combustion process, Enthalpy of formation, Fuel supply, Types of combustion chamber, Can-annular combustion chamber, Tube-annular combustion chamber, Annular combustion chamber, Combustion chamber performance, Combustion intensity, Combustion efficiency, Combustion stability Emissions, Materials.

5 Axial Flow Turbines 5 Hrs

Types of Turbines, spool shafts in aero engines, Advantages and disadvantages, Turbine geometry, Thermodynamic and Aerodynamic theory, velocity diagrams, Impulse turbine, turbine blade cooling. Exhaust System: Introduction, Exhaust gas flow, environmental considerations, construction and materials.

6 Prediction of Performance of Simple Gas Turbines 5 Hrs

Component characteristics, off design operation of the single shaft gas turbine, off-design operation of free turbine engine.

Unit III

7 Cooling, Seals and Lubrication System5 Hrs

The cooled turbine, methods of blade cooling, Seals: Non contacting seals - labyrinth seals, ring seals, Mechanical seals, Seal system, and dry gas seals, attrition coatings. Lubrication Systems: Basic oil system, lubrication management program, selection, oil contamination, filter selection, cleaning and flushing, oil sampling and testing

8 Materials of Gas turbine and Maintenance 5 Hrs

Introduction, Super alloys-Nickel based iron-nickel, Cobalt, Thermal barrier coating for jet engine alloys, advanced materials for jet engines. Maintenance: Introduction, On-wing maintenance, Scheduled maintenance, Unscheduled maintenance, Condition monitoring, Flight deck indicators, In-flight recorders, Ground indicators, Maintenance precautions, Trouble shooting, Adjustments, Ground testing. **Text Books**

1.Rolls Royce - "The Jet Engine" 5th edition, ISBN 0 902121 2 35,© Rolls-Royce plc 1986

2.Saravanamutto H.I.H, Rogers G.F.C., Cohen H, Gas Turbine Theory, 5thEdn., Pearson 2006

Reference Books:

1.Meherwan P. Boyce "Aircraft Propulsion and Gas Turbine Engines", CRC press, Taylor and Francis Group, London New York.ISBN 978-0-8493-9196-5

2.Meherwan P. Boyce "Gas Turbine Engineering Handbook (Fourth Edition)", 2012, Elesevier, ISBN-978-0-12-383842-1

Prog	ram: Bachelor of Engineering		Semester: VII
Cour	se Title: Optimization Metho	ds	Course Code: 22EMEE401
L-T-P	2: 1-0-2	Credits: 3	Contact Hours: 5 Hrs/week
ISA N	/larks: 80	ESA Marks: 20	Total Marks: 100
Teac	hing Hours: 65	Examination Duration: 2 Hrs	
1.	Introduction to Optimization Introduction, Engineering Ap Optimization Problems, Tool	pplications of Optimization, Optimiz	ation Techniques, Classification of
2. 3.	Analysis, Connection definiti Topology Optimization 08 H Introduction to Topology Op	on, Model Simplification 08 Hrs	•
4.	Topography Optimization 0 Introduction to Topography Patterns	8 Hrs Optimization, Topography Optimizat aphy , Exporting Topography Re	
5.	Gauge Optimization 04 Hrs	mization, Run Optimization –Gauge	e, Analyzing & Comparing Gauge
6.	Fastener Optimization, Lattic Introduction to Fastener Opt	e Optimization 08 Hrs imization, Introduction to Lattice Op Lattice Properties , Lattice Diame	
7.	Joints, Actuators ,Motors, L Structures Features with mo Running Optimization from r Manufacturing Analysis Intro	Yorkflow, Geometry handling, Movin Jsing Table Data as input, Springs otion, Analyze motion Animating notion loads and results, Exporting to oduction 05 Hrs	/Dampers, Gravity, Using Inspire results, Plotting results , Tracers ,
Tout		, Casting and stamping simulation	
	Books		
1) En 2) Pra	actical_Aspects_of_Optimiza	y and Practice, Fourth edition, S. S. F ation_ with_ Altair_ OptiStruct by Al th_ Inspire by Altair Engineering	

Program: Bachelor of Engineering		Semester: VIII
Course Title: Internship – Training		Course Code: 18EMEI493
L-T-P: 0-0-6	Credits: 6	Contact Hours:
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours:	Examination Duration: 3 Hrs	

Internships are educational and career development opportunities, providing practical experience in a field or discipline. They are structured, short-term, supervised placements often focused around particular tasks or projects with defined timescales.

An internship may be compensated, non-compensated or some time may be paid. The internship has to be meaningful and mutually beneficial to the intern and the organization. It is important that the objectives and the activities of the internship program are clearly defined and understood. Following are the intended objectives of internship training:

- Will expose Technical students to the industrial environment, which cannot be simulated in the classroom and hence creating competent professionals for the industry.
- Provide possible opportunities to learn, understand and sharpen the real time technical / managerial skills required at the job.
- Exposure to the current technological developments relevant to the subject area of training.
- Experience gained from the 'Industrial Internship' in classroom will be used in classroom discussions.
- Create conditions conducive to quest for knowledge and its applicability on the job.

Program: Bachelor of Engineering		Semester: VIII
Course Title: Internship - Project		Course Code: 20EMEW494
L-T-P: 0-0-11	Credits: 11	Contact Hours:
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours:	Examination Duration: 3 Hrs	

An internship is an experiential academic experience in which a student has intentional learning goals/objectives with measurable outcomes. These learning goals/objectives may include:

- Academic Learning: the student may apply and test knowledge learned in the classroom to a professional work environment.
- *Career Development:* the student may explore a specific field of interest, expand his or her professional network and gain and understanding of the qualifications and duties involved in a specific profession or career field.
- *Skill Development:* the student gains an understanding of the transferable skills and knowledge required for success in a professional work environment and integrates those skills in their academic learning.
- *Personal Development:* the student gains decision-making skills, self-confidence, business savvy, ethics, and teamwork required for success in a professional work environment.

An internship is designed as an exchange. The student agrees to complete work that will benefit the host organization and in return is offered the opportunity to learn new skills, expand his or her knowledge of a particular field and explore career options. Employers offer internships for many reasons. They see student interns as fruitful and economical resources with which they can accomplish projects not otherwise possible. They believe interns bring enthusiasm and new ideas into work settings and make strong employees. Just as importantly, employers feel an increasing commitment to education and want to help train students to assume responsible roles in society.

Program: Bachelor of Engineering	5	Semester: VIII
Course Title: Capstone Project		Course Code: 20EMEW402
L-T-P: 0-0-11	Credits: 11	Contact Hours: 22 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours:	Examination Duration: 3 Hrs	

An academic capstone project is a comprehensive project that culminates a student's academic and intellectual experience. Most commonly, capstone projects are carried out during their final year of school or during the end of an academic program.

The purpose of this project is to prepare students for future career challenges. Even the topics students are assigned (or even choose for yourself) are designed to help students analyze real-life problems and come up with suitable solutions to them, thus contributing to their wisdom, knowledge, and problem-solving abilities. In the process of researching a solution to the problem students intend to solve for their capstone project, students will also gain insight into the latest trends in their field.

Program: Bachelor of Engineering	← BACK TO VIII SEMESTER	Semester: VIII
Course Title: Aircraft Systems and	Design	Course Code: 15EMEE413
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	l Init I	

Unit I

1. Aircraft industry overview 3 Hrs

Evolution and History of Flight, Types Of Aerospace Industry, Key Players in Aerospace Industry, Aerospace Manufacturing, Airline deregulation, Structure of the industry, Airline economics, Aircraft design process, Aerospace Industry Trends.

2.Introduction to Aircrafts 5 Hrs

Basic components of an Aircraft, Structural members, Aircraft Axis System, Aircraft Motions, Control surfaces and High lift Devices. Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations based on Power Plant Location, Wing vertical location, intake location, Tail Unit Arrangements, Landing Gear Arrangements. Unconventional Configurations-Biplane, Variable Sweep, Canard Layout, Twin Boom Layouts, Span loaders, Blended Body Wing Layout, STOL and STOVL Aircraft, Stealth Aircraft. Advantages and disadvantages of these Configurations.

3. Introduction to Aircraft Mechanical Systems 8 Hrs

Types of Aircraft Systems, Mechanical Systems: Environmental control systems (ECS), Pneumatic systems, Hydraulic systems, Fuel systems, Landing gear systems, Engine Control Systems, Ice and rain protection systems, Cabin Pressurization and Air Conditioning Systems, Steering and Brakes Systems Auxiliary Power Unit.

Unit II

4. Basic Principles of Flight 7Hrs

Significance of speed of Sound, Air speed and Ground Speed, Properties of Atmosphere, Bernoulli's Equation, Forces on the airplane, Airflow over wing section, Pressure Distribution over a wing section, Generation of Lift, Drag, Pitching moments, Types of Drag, Lift curve, Drag Curve, Lift/Drag Ratio Curve, Factors affecting Lift and Drag, Center of Pressure and its effects. Aero foil Nomenclature, Types of Aero foil, Wing Section- Aerodynamic Center, Aspect Ratio, Effects of lift, Drag, speed, Air density on drag,

5. Overview of the Aircraft Design Process 6Hrs

Introduction, Phases of aircraft Design, Aircraft conceptual Design Process, Conceptual stage, Preliminary Design, Detailed Design, Design Methodologies. Aerodynamic loads, Inertial loads, Loads due to engine, Actuator loads, maneuver loads, VN diagrams, Gust loads, Ground loads, Ground conditions, Miscellaneous loads. Sample problems.

6. Aircraft materials 3 Hrs

Introduction, Basic construction, material forms- Metallic materials and forms. Alloy designations, Mechanical properties- strength, static, stress strain curves, fatigue properties, crack growth.

Unit III

7. Analysis of plates 4 Hrs

Theory of plates- Analysis of plates for bending, stresses due to bending, plate deflection under different conditions, Plate buckling, Compression buckling, shear buckling and buckling due to in plane bending moments. Sample exercises.

8.Analysis of Beams 4 Hrs

Theory of beams- Symmetric beams in pure bending, deflection of beams, Unsymmetrical beams in bending. Sample exercises. Torsion in closed section beams, torsion in open section beams, multi cell sections. Sample exercises.

Text Books

- 1. Daniel P Raymer, "Aircraft Design- A conceptual Approach", 6, AIAA education series, 2012
- 2. T.H.G. Megson, "Aircraft Structures for Engineering Students", 5, Elsevier science publications, 2012

Program: Bachelor of Engineering	5	Semester: VIII
Course Title: Industrial Engineeri	ng Methods and Practices	Course Code: 15EMEE414
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	11.11	

Unit I

1. Industrial engineering and productivity 6 Hrs

Evolution of industrial engineering, industrial engineering functions, recent advances in industrial engineering, productivity of materials, land, buildings, machines and manpower, measurement of productivity, factors affecting the productivity.

2. Methods engineering: 4 Hrs

Objective and scope of work-study and method-study, human factor in work-study, work-study and management, work-study and supervisor, work-study and worker.

3. Methods analysis techniques: 6 Hrs

Types of recording techniques, process chart symbols, construction of charts (operation process chart, flow process chart, two hand process chart, multiple activity chart, travel chart, string diagram etc.), applications of various charts with examples.

Unit II

4. Micro motion study: 5 Hrs

Purpose of micro motion study, fundamental hand motions, therbligs, micro motion study equipments, cycle graph and chronocyclegraph, simo-chart construction, memo motion study.

5. Work measurement & time Study practice: 6 Hrs

Concept of human work, terminology used in work measurement, theory of work measurement, work measurement techniques, definition of time study , time study equipments, basic time study procedure, conducting the time study

6. Performance rating & computing standard time: 5 Hrs

Necessity of performance rating, factors influencing rating, rating systems and their details, allowances and their details, problems in time study and time standards, standard time computation with examples.

Unit III

7. Ergonomics: 4 Hrs

Areas of study under ergonomics, system approach to ergonomics model, man-machine system, work capabilities of industrial worker, general principles for carrying out physical activities.

8. Design of man-machine system interface: 4 Hrs

Concept of fatigue in industrial worker, relationship between controls and displays, design of work place and effect of environment (influence of climate on human efficiency, influence of noise, vibrations and lighting system).

Text Books

1. Jhamb L. C, Work Study & Ergonomics, 16th Edition Everest Publishing House 2009

- 1. ILO, Introduction to Work Study, 4th Revised Edition International Labour Office 1992
- 2. Suresh Dalela and Sourabh, Work Study and Ergonomics, 6th edition Standard Publishers Distributors 2017
- 3. Vijay Sheth, Industrial Engineering Methods and Practices, 5th Edition 2012 Penram International Publishing (India) Pvt.Ltd.

	Semester: VIII
nology	Course Code:15EMEE415
Credits:3	Contact Hours:3 Hrs/week
ESA Marks:50	Total Marks:100
Examination Duration:3 Hrs	
	Credits:3 ESA Marks:50

Unit I

1. Solar Radiation, Measurement of Solar Radiation, Solar Radiation Geometry 8 Hrs

Energy source, India's production and reserves of commercial energy sources, need for nonconventional energy sources. Solar Radiation: Extra-Terrestrial radiation, spectral distribution of extraterrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data. Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working. Solar Radiation Geometry: Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

2. Radiation Flux on a Tilted Surface, Solar Thermal Conversion 8 Hrs

Radiation Flux on a Tilted Surface: Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical example. Solar Thermal Conversion: Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

Unit II

3. Solar Photovoltaic Energy Conversion and PV System Applications 8 Hrs

Principles - Physics and operation of solar cells. Classification of solar PV systems, Solar cell energy conversion efficiency, I-V characteristics, effect of variation of solar insolation and temperature, losses. Solar PV power plants. Building-integrated photovoltaic units, grid-interacting central power stations, standalone devices for distributed power supply in remote and rural areas, solar cars, aircraft, space solar power satellites. Socio-economic and environmental merits of photovoltaic systems.

4. Fuel Cell Technology 8 Hrs

Fuel cell electrochemistry - Reaction rate - Butler Volmer equation-implications and use of fuel cell polarization curve - Conversion of chemical energy in electricity in a fuel cell. Cogeneration - Fuel cell electric vehicles - Fuel cell vehicles - Motor cycles and bicycles-airplanes - Fueling stations - Fuel cell power plant structure - Fuel processor and fuel cell stack. Advantages and disadvantages. Problems with fuel cells. Research related to fuel cell development in the world and in India.

Unit III

5. Energy Storage 4 Hrs

Introduction, energy demand, energy storage devices, types of battery, basic principle, components, cathode and anode materials, effect of nano-size on energy storage and electrode materials performance, electrochemical energy storage, super-capacitors, advantage of nanotechnology in energy storage devices.

6. Energy Policy 4 Hrs

Energy policy issues - Fossil Fuels, renewable energy, power sector reforms, restructuring of energy supply sector, energy strategy for future. Energy conservation act and National electricity policy and plan.

Text Books

Reference Books:

1.David Merick, Richard Marshall, (2001), Energy, Present and Future Options, Vol. I and II, John Wiley. 2.Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986

3.Peter Gevorkian, Sustainable Energy Systems Engineering, McGraw Hill, 2007

4.Bagotsky. V.S, "Fuel Cells", Wiley, 2009.

5. Ibrahim Dincer and Marc A. Rosen, "Thermal Energy Storage Systems and Applications", 2nd Edition, John Wiley and Sons Ltd., 2011.

Program: Bachelor of Engi	neering	Semester: VIII
Course Title: Introduction	to Nano-science and Nanotechnology	Course Code:15EMEO401
L-T-P:3-0-0	Credits:3	Contact Hours:3 Hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 Hrs	
	Unit I	

1 Introduction:5Hrs

Nanotechnology, Frontier of future- an overview

Length scales, Variation of physical properties from bulk to thin films to nanomaterials, - confinement of electron energy states (LDOS) in 0D, 1D,2D and 3D systems (qualitative treatment); Surface, size, shape and assembly effects.

Bonding and crystal structure in solids, colloids and core-shell structures. Chemical and molecular interaction, functionalziation, basis for biological self-assembly and self-organization.

2 Synthesis of nanomaterials: 6Hrs

Top-down approach: Lithography and soft processes, Ball milling, chemical stamping.

Bottom-Up approach: Chemical Routes for Synthesis of Nanomaterials, Solvo-thermal and Sol-gel synthesis; Microemulsions, micelles and reverse micelles; Physical and Chemical Vapour Deposition, Sputtering, Laser ablation, Epitaxy.

Biological Methods: Role of plants and bacteria in metal (magnetic and non-magnetic) nanoparticle synthesis

3 Characterization:5Hrs

Electron Microscopy (SEM/TEM); Scanning Probes (STM, AFM), X-ray Photoelectron Spectroscopy (XPS), Optical Spectroscopy –IR/UV/VIS, Raman, Photoluminescence, X-ray Diffraction (including Debye-Scherrer method), Particle Size Analyser-light Scattering, Electrical (I-V and C-V), Porosity (BET method), Zeta potential, nano-indentation.

4 Properties: 6Hrs

Unit II

- Electronic and optoelectronic properties: Ballistic transport, Coulomb blockade, Diffusive transport,
- Dielectric properties: Polarisation, Ferroelectric behavior.
- Optical Properties: Photoconductivity, Optical absorption & transmission, Plasmons and Excitons, Luminescence and Phosphorescence.
- Magnetic properties: Nanomagnetism, magneto-resistance; Super Para Magnetism
- Thermal and Mechanical properties: changes in thermal transport, thermal transition temperatures, and interfaces with dissimilar materials. Improved hardness and toughness of metals and alloys

Biological: Permeability through biological barriers, molecular recognition and biological assemblies.

5 General Applications:5Hrs

- Electrical, Electronics & Photonics- Switching glasses, Semiconductor devices including LEDs and Solar Cells, Photonic Crystals.
- Computer Science- Storage devices and Quantum computing etc
- Mechanical and Civil: Composites and their properties.
- Environmental and Chemical: Porous materials, Catalysis, tracers etc

Biotechnology- Interaction between bimolecular and nanoparticle surface, nano-bio assemblies, Nanosensorsetc

6 Specific Applications: 8Hrs

Unit III

Part of this can be implemented as a student project that involves: literature-survey, project report and a Seminar (Power-Point) Presentations by groups of two students each (applications and students to be identified by teachers and monitored by one teacher each):

- Carbon and its allotropes: Fullerenes (C₆₀), Carbon nanotubes and Graphene:
- Applications of Carbon Nanotubes: Field emission, Fuel Cells, Display devices, Hydrogen storage.
- Nano-Medicine: Developments and protocols for diagnostics, drug delivery and therapeutics.
- Nanotribology: Friction at nanoscale, Nanotribology and wear-resistance, MEMS and NEMS
- Photo-electronics: Merger of photonics and electronics at nanoscale dimensions
- Single electron devices, molecular circuits
- Nanocomposites (i.e. metal oxide, ceramic, glass and polymer and core-shellbased);
- Biomemitics and Biomaterials, synthetic nanocomposites for bone, teeth replacement, DNA scaffolding.
- Nanosensors: Temperature Sensors, Chemical and gas Sensors, Light and radiation sensors 7 Demonstration through experiments: 4Hrs
 - 1. Chemical synthesis of Au and Ag nanoparticles and characterization by Optical spectroscopy of size dependence band-gap
 - 2. Debye Scherrer analysis of XRD data of nanoparticles of different sizes.
 - 3. Surface area and Pore size distribution of the BET data from a nano-porous material.
 - 4. Some experiment to study mechanical strength of nanocomposites (nano-indentation)
- 8 Guest lectures from industries and research laboratory personnel: 1Hrs

Societal issues of Nanotechnology: Prospects and Dangers; Commercial aspects, emerging industry and employment opportunities.

Text Books

Reference Books:

1.Nano Materials- A.K. Bandyopadhyay/ New Age Publishers.

2.Nanocrystals: Synthesis, Properties and Applications.

3.C. N. R. Rao, P. John Thomas and G. U. Kulkarni, Springer Series in Materials Science.

4.Nano Essentials- T. Pradeep/TMH.

5.Plenty of Room for Biology at the Bottom-An introduction to bio-nanotechnology, E. Guzit, Imperial College Press

Books Recommended for extra reading:

- 1. Introduction to Nanotechnology, C P Poole & F J Owens, Wiley, 2003.
- 2. Understanding Nanotechnology, Scientific American 2002.
- 3. Nanotechnology, M Ratner & D Ratner, Prentice Hall 2003.
- 4. Nanotechnology, M Wildon, K Kannagara G Smith, M Simmons & B Raguse, CRC Press Boca Raton 2002.

Apart from the above, in view of the course being of advanced nature, the content of course will be supplemented with course material from the course instructors.

Program: Bachelor of Engineering		Semester: VIII
Course Title: Nanotechnology		Course Code: 15EMEO402
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	
1. An overview of Nanoscience&	Nanotechnology: 4 Hrs	
Historical background – nature, sco	ppe and content of the subject – mul	tidisciplinary aspects – industrial,
economic and societal implications	i	
2. Experimental Techniques and I	Methods: 5 Hrs	
For investigating and manipulating	materials in the nano scale - electro	on microscope – scanning probe
microscope – optical and other mic	croscopes	
3. Fullerenes: 6Hrs		
Discovery, synthesis and purificati	on – chemistry of fullerenes in the	condensed phase – orientational
ordering – pressure effects – cond	uctivity and superconductivity – ferr	omagnetism – optical properties.
Carbon Nanotubes – synthesis and	purification - filling of nanotubes -	mechanism of growth –
electronic structure – transport pro	operties – mechanical and physical p	roperties – applications
	Unit II	
4. Self-assembled Monolayers: 5	5 Hrs	
Monolayers on gold – growth proc	cess – phase transitions – patterning	monolayers – mixed monolayers
 applications 		
5. Semiconductor Quantum Dots	: 5 Hrs	
Synthesis – electronic structure	of nanocrystals – how quantum d	ots are studied – correlation of
properties with size – uses		
6. Monolayer-protected Metal Na	-	
	icterization – functionalized meta	I nanoparticles –applications –
superlattices		
	Unit III	
7. Nanobiology: 5 Hrs		
	and nanoparticle surfaces – mater	
-	cal applications – nanoprobes	for analytical applications –
nanobiotechnology – future perspe		
8. Molecular Nanomachines: 5		
	aches – molecular motors and mach	ines – other molecular devices –
single molecular devices – practica	l problems involved	
Text Books		
• •	ladras); NANO: The Essentials – Und	erstanding Nanoscience and
Nanotechnology; Tata McC	Graw-Hill India (2007)	
Reference Books:		
•	sen; Nanotechnology: Wiley (2005).	
	Nanoscale Science and Technology [S	Series: Nanostructure Science
andTechnology]: et al (Ed);	Springer (2004).	

- 3. Demystified: Linda Williams & Wade Adams; Nanotechnology McGraw-Hill (2007)
- 4. Charles P Poole Jr, Frank J Owens, Introduction to Nanotechnology: Wiley India Pvt. Ltd., New Delhi, 2007

	ring	Semester: VIII
Course Title: Design of Experin	nents	Course Code: 15EMEO403
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	
designing the experiments. Chapter 2.Taguchi's approach	applications of experimental design, to quality 04 Hrs 's quality philosophy, Quality loss fund ors.	
Introduction to analysis of var	iance (ANOVA), test of hypothesis, limit s of two samples, testing of hypothesis	C
· · ·	Unit II	
Exercises	- · ·	
Chapter 6. Regression Approa	ch 04 Hrs ple regressions, Types of designs, Cer	
Chapter 6. Regression Approa		ral 2 ^{k-p} Fractional Factorial Design, ntral composite design and Box-
Chapter 6. Regression Approa Simple Regression and Multi Behnken design, Exercises Chapter 7. Orthogonal Array E Introduction, Design of Orthog Chapter 8. Robust Parameter D	ple regressions, Types of designs, Cer Unit III Experiments 04 Hrs gonal arrays, ANOVA for Orthogonal Arra	ntral composite design and Box-
Chapter 6. Regression Approa Simple Regression and Multi Behnken design, Exercises Chapter 7. Orthogonal Array E Introduction, Design of Orthog Chapter 8. Robust Parameter D	ple regressions, Types of designs, Cer Unit III Experiments 04 Hrs gonal arrays, ANOVA for Orthogonal Arra Design 04 Hrs	ntral composite design and Box-
Chapter 6. Regression Approa Simple Regression and Multi Behnken design, Exercises Chapter 7. Orthogonal Array E Introduction, Design of Orthog Chapter 8.Robust Parameter D Introduction, Signal-to-Noise r Text Books 1. Douglas C. Montgomery, 2. Madhav S. Phadke, "Qua New Jersey.	ple regressions, Types of designs, Cer Unit III Experiments 04 Hrs gonal arrays, ANOVA for Orthogonal Arra Design 04 Hrs	ntral composite design and Box y. approach. ohn Wiley and Sons. rentice Hall PTR, Englewood Cliffs,
 Chapter 6. Regression Approads Simple Regression and Multi Behnken design, Exercises Chapter 7. Orthogonal Array E Introduction, Design of Orthog Chapter 8. Robust Parameter E Introduction, Signal-to-Noise r Text Books Douglas C. Montgomery, Madhav S. Phadke, "Quanter New Jersey. R. Panneerselvam, "Design of States of States	ple regressions, Types of designs, Cer Unit III Experiments 04 Hrs gonal arrays, ANOVA for Orthogonal Arra Design 04 Hrs ratio, ANOVA for S/N ratio, Steps of S/N a , "Design and Analysis of Experiments", J lity Engineering using Robust Design", P	ntral composite design and Box y. approach. ohn Wiley and Sons. rentice Hall PTR, Englewood Cliffs

Program: Bachelor of Engineering		Semester: VIII
Course Title: Engine Management Systems		Course Code: 15EMEO404
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
Linit I		

Unit I

1 Basics of Gasoline (SI) Engine6Hrs

Introduction, Operating concept, Valve timing, Stages of combustion, Combustion knock, Effect of engine variables on knock, Torque and power, Engine efficiency, Specific fuel consumption, Fuels for spark ignition engines.

2 Gasoline engine management 4Hrs

Technical requirement, Cylinder charge control, Air-charge control, Variable valve timing, controlled charge flow, A/F –mixture formation, Ignition- Battery ignition systems, Electronic ignition system, Inductive ignition system, Ignition coils, Spark plugs.

3 Gasoline fuel injection 5 Hrs

Fuel supply for manifold injection, Operating concept, Electromagnetic fuel injectors, Types of fuel injection, Fuel supply for gasoline direct injection, Operating concept, Rail, High pressure pump, Pressure control valve, High pressure injector, Combustion process, A/F mixture formation, Operating modes, Motronic engine management, ME-Motronic, MED-Motronic.

Unit II

4 Basics of Diesel Engine 5 Hrs

Method of operation, Stages of combustion, Operating statuses, Fuel-injection system, Combustion chambers-Di and IDI, Diesel fuels-properties, Alternative fuels- Alcohols, Vegetable oils.

Cylinder Charge Control - Intake air filters, Swirl flaps, Superchargers & Turbochargers, Exhaust Gas Recirculation.

5 Diesel fuel injection 5 Hrs

Requirements of ideal fuel injection system, Basic Principles of fuel supply - Mixture distribution, Start of fuel injection and delivery, Injected fuel quantity, Injection characteristics, Injection pressure, Injection direction and number of injection jets. Fuel supply system.

6 Fuel injection pumps 5 Hrs

Design and method of operation of in-line fuel injection pump systems, Distributor fuel injection pump systems, Unit injector system and unit pump system, Common rail system.

Nozzles and Nozzle holders - Pintle nozzles, Hole type nozzles, future development.

Unit III

7 Engine Exhaust Emission Control 5 Hrs

Formation of NOX, HC/CO mechanism, Smoke and Particulate emissions, Methods of controlling emissions- Thermal converter, Catalytic converter and Particulate Trap, Diesel Smoke and its control, Emission (HC, CO, NO and NOX) measuring equipments, Emission norms.

8 Recent Trends in IC Engines 5 Hrs

Dual fuel Engine, Homogeneous Charge Compression Ignition Engine (HCCI), Reactivity controlled compression ignition engine (RCCI), Lean Burn Engine, VVT engines,

Text Books

- 1. Robert Bosch Gmbh, 2004, Gasoline Engine Management 2nd Edition
- 2. Robert Bosch Gmbh, 2004, Diesel Engine Management " 3rd Edition

Reference Books:

1. Mathur and Sharma, DhanpalRai& sons, A Course in I.C. Engine – New Delhi

2. John B. Heywood, Internal Combustion Engine Fundamentals – McGraw- Hill