

Curriculum Structure and Curriculum Content for the Academic year: 2022-24

School: Computer Science and Engineering Program:M.Tech-Computer Science and Engineering

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives	5
Program Educational Objectives -PEO's	
Curriculum Structure-Overall	5
Curriculum Structure-Semester wise	
List of Program Electives	
Curriculum Content- Course wise	. 11

Vision and Mission Statements of the KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education –recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the Department/School

Department Vision

The KLE Tech- School of Computer Science will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in a wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Consolidated View of Program Educational Objectives (PEOs) /Program Outcomes (POs) and Program-Specific Objectives (PSOs)

Program Educational Objectives (PEO)	Program Outcomes (PO)	Program Specific Objectives (PSO)
PEO: 1. Gain in depth knowledge of Computer Science and Engineering and acquire capabilities to compete at global level with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge to conduct research in theoretical, practical and policy context.		
PEO: 2. Have in depth knowledge and research skills to professionally practice in a variety of fields including databases, computer network, system software and Embedded Systems.	PO2: An ability to write and present a substantial technical report/document.	
PEO: 3. Acquire strengths and skills to work in a collaborative and multidisciplinary work and learn techniques to use modern tools required for simulation, modeling and measuring.	PO3: Students should be able to demonstrate a degree of mastery over the area asper the specialization of the program. The mastery should be at a levelhigher than the requirements in the appropriate bachelor program	
PEO: 4. Have knowledge and understanding of managing projects and finance efficiently as a member and leader in a team with greater communication skills preferred by the profession.	PO4: An ability to use modern computational tools in modeling, simulation andanalysis with effective participation in multidisciplinary teams and contribute towards achieving the common goals of the team.	
PEO: 5. Acquire professional and intellectual integrity and ethics, learn independently and continuously to upgrade the knowledge an competence with enthusiasm.	PO5: An ability to work with integrity and ethics in their professional practicehaving an understanding of responsibility towards society with sustainabledevelopment for life time.	

Curriculum Structure-Overall

Semeste	r	Total Program Credit: 88		Year: 2022-24
	I	II	III	IV
	Applied Mathematics 19ECSC701 (3-0-1)	Design and Analysis of Algorithms 21ECSC709 (3-0-1)	Blockchain and Distributed Ledgers 21ECSC801 (2-0-1)	Project Work 21ECSW803(0-0-20)
	Data Mining and Machine Learning 21ECSC702 (3-0-1)	Distributed & Cloud Computing 20ECSC710 (2-0-1)	Mobile Application Development 21ECSC802 (2-0-1)	
er wise	Computer Networks 21ECSC703(3-0-1)	Big Data and Analytics 20ECSC711(2-0-1)	Industrial/ In-House Training 21ECSW801(0-0-6)	
s Semester wise	Internet of Things 20ECSC704(3-0-1)	Cryptography and Network Security 21ECSC701(3-0-1)	Minor Project 21ECSW802(0-0-8)	
Courses	Operating Systems 20ECSC705(3-0-1)	Image and Video Processing 21ECSC713(2-0-1)		
	Problem Solving Laboratory 21ECSP706(0-0-1.5)	Professional Elective-1 XXECSE7XX (2-0-1)		
	Python Programming Laboratory 21ECSP707(0-0-1.5)	Mini Project 21ECSW718(0-0-3)		
		Web Technology Laboratory 21ECSP708(0-0-2)		
Credits	23	25	20	20

Curriculum Scheme - Semester wise Semester: I

No.	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	19ECSC701	Applied Mathematics	PC	3-0-1	4	5	50	50	100	3 Hours
2	20ECSC702	Data Mining and Machine Learning	PC	3-0-1	4	5	50	50	100	3 Hours
3	21ECSC703	Computer Networks	PC	3-0-1	4	5	50	50	100	3 Hours
4	20ECSC704	Internet of Things	PC	3-0-1	4	5	50	50	100	3 Hours
5	20ECSC705	Operating Systems	PC	3-0-1	4	5	50	50	100	3 Hours
6	21ECSP706	Problem Solving Laboratory	PC	0-0-1.5	1.5	3	80	20	100	3 Hours
7	21ECSP707	Python Programming Laboratory	PC	0-0-1.5	1.5	3	80	20	100	3 Hours
		TOTAL		23 (15-0-8)	23	31	410	290	700	

Note: L: Lecture T: Tutorials P: Practical, ISA: In Semester Assessment ESA: End Semester Assessment

Date:

P G Coordinator

Head, SoCSE

Semester - II

No.	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	21ECSC709	Design and Analysis of Algorithms	PC	3-0-1	4	5	50	50	100	3 Hours
2	20ECSC710	Distributed & Cloud Computing	PC	2-0-1	3	4	50	50	100	3 Hours
3	20ECSC711	Big Data and Analytics	PC	2-0-1	3	4	50	50	100	3 Hours
4	21ECSC701	Cryptography and Network Security	PC	3-0-1	4	5	50	50	100	3 Hours
5	21ECSC713	Image and Video Processing	PC	2-0-1	3	4	50	50	100	3 Hours
			Elec	tive 1						
	21ECSE715	Deep Learning								
6	21ECSE716	Computer Graphics	PE	2-0-1	3	4	50	50	100	3 Hours
	21ECSE717	High Performance Computing								
7	21ECSW718	Mini Project	РС	0-0-3	3	6	50	50	100	3 Hours
8	21ECSP708	Web Technology Laboratory	РС	0-0-2	2	4	80	20	100	3 Hours
	TOTAL			25(14-0-11)	25	36	430	370	800	

Note: L: Lecture T: Tutorials P: Practical,ISA: In Semester Assessment ESA: End Semester Assessment PJ-Project, PC-Programme Core, PE-Programme Elective

Date:

P G Coordinator

Head, SoCSE

Semester: III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	21ECSC801	Blockchain and Distributed Ledgers	PC	2-0-1	03	04	50	50	100	3 hours
2	21ECSC802	Mobile Application Development	PC	2-0-1	03	04	50	50	100	3 hours
3	21ECSW801	Industrial / In-House Training	PJ	0-0-6	06	18	50	50	100	3 hours
4	21ECSW802	Minor Project	PJ	0-0-8	08	24	50	50	100	3 hours
		TOTAL		20 (4-0-16)	20	50	200	200	400	

Note: L: Lecture T: Tutorials P: Practical, ISA: In Semester Assessment ESA: End Semester Assessment PJ-Project

Date:

P G Coordinator

Head,SoCSE

Semester: IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	21ECSW803	Project Work	PJ	0-0-20	20	60	50	50	100	3 hours
		TOTAL		0-0-20	20	60	50	50	100	

Note: L: Lecture T: Tutorials P: Practical, ISA: In Semester Assessment ESA: End Semester Assessment PJ-Project, PC-Programme Core,

PE-Programme Elective

Date:

P G Coordinator

Head, SoCSE

Consolidated Credits of all semesters:

Semester	I	11		IV	Total
Credits	23	25	20	20	88

List of Program Electives

Sr. No	Name of the Course	Course Code
1.	Deep Learning	21ECSE715
2.	Computer Graphics	21ECSE716
3.	High Performance Computing	21ECSE717

Curriculum Content- Course wise

Semester-I

Progra	m: Master of Technol	logy	Semester: I		
-	e Title: Applied Mathe	•.	Course Code: 19ECSC	701	
L-T-P:3	3-0-1	Credits: 4	Contact Hrs: 5hrs/w	eek	
ISA Ma	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teachi	eaching Hrs: 42 Lab: 28hrs Exam Duration: 3 hrs				
1	Introduction to Stat	istics			
	Measure of Centra	Collecting data, Statistical M al Tendency and Variance, I ay, Graphical and Tabular Displa	mportance of Data	04 hrs	
2	Discrete Random w mass function, Cum discrete random w	ariables and Probability Distrib variables, Probability distributi ulative distribution function, Me variable, Discrete Uniform di tric distribution, Poisson distribu	ons and Probability ean and Variance of a stribution, Binomial	07 hrs	
3	Continuous Random Variables and Probability Distributions Continuous random variables, Probability distributions and probability density functions, cumulative distribution functions, Mean and Variance of a continuous random variable, Uniform distribution, Normal Distribution, Normal approximation to Binomial and Poisson distribution, Exponential distribution.				
4	population (variance a normal population Goodness of fit, Infe Inference for a di (variances unknow	sis Hypothesis testing, Inference e known and unknown) Inference n, Inference on a population pr erence for a difference in Mea ifference in means of two n), Inference on the Variance ce on two population proportio	ce on the variance of oportion, Testing for ns(variances known), normal distributions ces of two normal	08 hrs	
5	Simple Linear Regree Estimation of Variar Multiple linear regree	ession and Correlation ession, Properties of Least sq nces, Transformations to a Strai ession model, Least square Estin multiple linear regression, Prop	ght line, Correlation, nation of parameters,	06 hrs	

	estimators and estimation of variance.				
6	Queuing Theory 1 :				
	Basics of queuing models, Model I (M /M/ 1): (∞ /FIFO), Single Server with Infinite Capacity, Model II (M/M/s): (∞ /FIFO), Multiple Server with Infinite Capacity	05 hrs			
7	Queuing Theory 2:				
	Model III (M/M/1): (k/FIFO), Single Server with Finite Capacity, Model IV (M/M/s): (k/FIFO), Multiple Server with Finite Capacity.	05 hrs			
Text B	ooks:				
1.	Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 2 nd Edition,John Wiley and Sons, ISBN-0-471-170027-5.				
Refere	ences:				
1.	Richard I Levin, David S Rubin, Statistics for Management, 6 th Edition, Prentic Hall India.	ce			
 Willian W Hines, Douglas C Montgomery, Probability and Statistics in Engineering, 2nd Edition, John Wiley and Sons. 					
3.	V. Sundarapandian, Probability, Statistics and Queuing theory, PHI, 2009.				
4.	4. Arnold Oral Allen, Probability, statistics, and queuing theory: with computer science applications, Gulf Professional Publishing, Edition: 2,28-Aug-1990				

Evaluation Scheme

ISA	A Sche	me

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab activity	20
Total	50

Laboratory Plan

ExptNo.	Experiment/ Job details	No. of Lab sessions/batch
1.	Basics of R and R studio	02
2.	Graphical Representation	01
3.	Measures of central tendency and dispersion	01
4.	Discrete probability distributions	01
5.	Continuous probability distributions	01
6.	Testing of hypothesis: One sample problem	01
7.	Testing of hypothesis: Two sample problem	02
8.	Simple linear regression and polynomial regression	02
9.	Multiple linear regression	01
10.	Hands-on activity on Data analysis	02

Prog	gram: Master of Techno	logy	Semester: I	
Course Title: Data Mining and Machine Learning Course Code: 21EC		6C702		
L-T-P : 3-0-1 Credits: 4 Contact Hrs: 5 hrs/v		veek		
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Теас	ching Hrs: 42	Lab: 28hrs	Exam Duration: 3 H	rs
1	 Chapter- 1: Introduction & Data Pre-Preprocessing 1 Introduction to data mining, Introduction to Machine Learning, Applications of Data mining/Machine Learning. 			6 hrs
2	 Chapter - 2: Mining Frequent Patterns, Associations and Correlations: Concepts and Methods Basic Concepts, Efficient and Scalable Frequent Item set mining methods, finding interesting Patterns, Pattern Evaluation Methods, Applications of frequent pattern and associations, Advanced Frequent Pattern Mining- Frequent Pattern and Association Mining: A Road Map, Mining Various Kinds of Association Rules. Pattern Mining in Multilevel, Multidimensional Space, Constraint-Based Frequent Pattern Mining, Mining High-Dimensional Data and Colossal Patterns. 			8 hrs
3	 Chapter- 3: Supervised Learning: Classification Model Evaluation and Selection; Techniques to Improve Classification Accuracy: ensemble methods; Bayesian belief networks; Introduction to perceptron learning, Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, and Application- classifying digits. Support vector machines. 		8 hrs	
4	function,	Analysis ion: Single and Multiple variables, S e cost function, Classification using	·	6hrs

		enter 5. Uneveniend Learning Chuster Analysis	Olawa		
	C	napter- 5: Unsupervised Learning: Cluster Analysis	8hrs		
5	Р	artitioning methods, Hierarchical Methods, Density based methods, Outlier			
	D	etection.			
	Cł	napter- 6: Social Network Analysis	6 hrs		
6	G	raph mining, Mining Variant and Constrained Substructure Patterns, Social			
	ne	etworks: Characteristics, Tasks and Challenges.			
Text	TextBooks(Listofbooksasmentionedinthe approvedsyllabus)				
	1. Jiawei Han, MichelineKamber, and Jian Pei, Data Mining: Concepts and Techniques,				
	3rd, Morgan Kaufmann, 2011				
	2. Pang-Ning, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson				
		Education, 2007			
Refe	References:				
	1. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining - Practical Machine Learning				
	Tools and Techniques, 3rd, Elsevier Inc, 2011				
	2.	M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson			
		Education. 2008.			

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab Activity	20
Total	50

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Data cleaning , data integration, and data reduction for given dataset	3
2.	Analysis of Apriori algorithm and FP growth algorithm	2
3.	Apply CNN and other classification algorithms and compute the evaluation parameters	2
4. Analysis of linear and logistic regression		2
5.	Implement K-mean and k-modes etc. algorithms	2
6.	Seminar on Advanced topics of data mining and machine learning.	3

Program: Master of Technology			Semester: I	
Course	e Code: 21ECSC703	703 Course Title: Computer Networks		
L-T-P-S	5 : 3-0-1	Credits: 4 Contact Hrs: 5 hr/week		eek
SA Ma	rks: 50 ESA Marks: 50 Total Marks: 100			
Teachi	ng Hrs: 42	Lab: 28hrs	Exam Duration: 3 h	rs
1	Chapter 1: Fundamental (Basic Definitions in Data Architecture, Packet Size a	Networks, Application	s, Requirements, Network	6 hrs
	Chapter 2: Data Link Laye			
2	•	•	RZI, Manchester), Framing, net and Multiple Access	8 hrs
	Chapter 3: The Network L	ayer		
3	Overview of Network Layer, Router Architecture, The Internet Protocol (IP): IPv4, Addressing, NAT, Routing Algorithms, Intra-AS Routing in the Internet: OSPF, Routing Among the ISPs: BGP, ICMP: The Internet Control Message Protocol,			8 hrs
	Chapter 4: Transport and	Application Layer :		
 Introduction and Transport-Layer Services, connectionless Transport: Connection-Oriented Transport: TCP , TCP Congestion Control , The and HTTP, Electronic Mail in the Internet, DNS—The Internet's Dire 		gestion Control , The Web	8 hrs	
	Service,			
5	Chapter 5: Multicasting T Intra domain and Inter d algorithms	·	ols: ocols, node level multicast	6 hrs
	Chapter 6: Wireless netw	orks and mobile IP:		
6	•	ss Networks, Wireless	s LAN Technologies, IEEE obile IP	6 hrs
Text B	ooks:			
1.	 Nader F. Mir, Computer and Communication Networks, 2nd Edition, Pearson Prentice-Hall, 2015. 			
2.	 J. F. Kurose and K. W. Ross, Computer Networking, A Top-Down Approach, 8th Ed, , Pearson , 2020. 			
3.	 Larry L Peterson & Bruce S Davien, Computer Networks A System Approach, 5th Ed Morgan Kaufmann (Elsevier), 2011. 			
References:				
 BehrouzForouzan, Data Communications and Networking, 5th Ed, McGraw Hill, 2012. 				

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab Activity	20
Total	50

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/batch
1.	Demonstration of Cisco Packet Tracer network tool: usage of hub, switch, and a router using a simple topology	02
2.	Application layer protocol implementation – DHCP and DNS	01
3.	Application layer protocol implementation – FTP, SMTP and HTTP	01
4.	Demonstration of static routing using Cisco Packet Tracer	01
5.	Assessment – 1 Demonstration of a given topology using Cisco Packet Tracer	01
6.	Demonstration of socket programming using a simple message board application - Connection oriented and connectionless.	01
7.	Demonstration of simple banking application using connection oriented socket programming.	01
8.	Demonstration of a simple calculator application using connectionless socket programming.	01
9.	Practice session for socket programming	01
10.	Exercise on usage of Wireshark tool to capture packets in the network.	01
11.	 Assessment – 2 i. Implementation of a given application using socket programming ii. Demonstration of packet captures and network performance analysis using the wireshark tool. 	01
12.	Develop a mobile application for Bluetooth Client – Server communication using Mit app inventor.	02

Prog	ram: Master of Technology	1	Semester: I	
Course Title: Internet Of Things Course Code: 20ECSC			.704	
L-T-P:3-0-1 Credits: 4 Contact Hrs: 5hrs/w		eek		
ISA I	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	hing Hrs: 42	Lab: 28hrs	Exam Duration: 3 hrs	5
1	Introduction to Internet o	f Things (IoT):	·	
		ics of IoT, Physical Design o unctional blocks, communicati	•	04 hrs
2		:: orks, Cloud Computing, E s, Embedded Systems, IoT Lev	•	06 hrs
3	Domain specific IoTs: Home Automation, Cities, Industry, Health and Lifest	Environment, Energy, Retail, yle.	Logistics, Agriculture,	06 hrs
4	IoT Platforms Design Met IoT Design Methodology, (hodology: Case Study on IoT System for V	Veather Monitoring.	04 hrs
5	Introduction to Python, Data types, data structures, Control of flow, functions modules, packages, file handling, data/time operations, classes,			06 hrs
6	IoT Physical Devices and Endpoints:Basic building blocks of an IoT device, Exemplary device: Rasyberry Pi,interface (serial, SPI, I2C), Programming Rasyberry Pi with Python.		06 hrs	
7	IoT Physical Servers & Cloud Offerings: Introduction to Cloud Storage models and communication APIs ,Webserver – Web server for IoT, Cloud for IoT, Python web application framework, Designing a RESTful web API		05 hrs	
8	Case Studies Illustrating lo	oT Design:		
	Home Automation-smart lighting, home intrusion detection, Cities-smart parking.			05 hrs
1 Refe	 Text Books: Internet of Things - A Hands-on Approach, ArshdeepBahga and Vijay Madisetti Universities Press, 2015, ISBN: 9788173719547 References: Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD) 2014, ISBN: 9789350239759 			

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab Activity	20
Total	50

Laboratory Plan

SI. No.	List of Experiments	No. of Lab sessions/batch
1	Understanding Hardware Details of Arduino Installation of Integrated Development Environment for Arduino Blinking an LED using Arduino Uno	2
2	Basic Instructions used for Programming Arduino Basic Sensors used while Programming Arduino	2
3	Switching on and off of 230V, 50Hz Bulb Switching on and off of 230V, 50Hz Fan Switching on and off of 50 Volts DC Motor	1
4	Working with Servo Motor Working with a Stepper Motor Bidirectional Rotation of a DC Motor	1
5	Infra Red Sensors Passive Infra Red Sensors Ultra-Sonic Sensor	1
6	Temperature and Humidity Sensor Heart Rate Sensor Rain Sensor	1
7	Light Dependent Register Soil Moisture Sensor Smoke Sensor	1
8	Working with Raspberry Pi Installation of an Operating system Remote Login	1
9	Conducting all the experiments from S. No. 1 to S.No. 7	1
10	Developing MIT App / Working with website / Controlling devices and Sensors through website using NODE MCU / Raspberry Pi	3

Prog	gram: Master of Techno	ogy	Semester: I	
Cou	rse Title: Operating Syst	ems	Course Code: 20ECSC705	
L-T-	P:3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	ching Hrs: 42	Lab: 28hrs	Exam Duration: 3 hrs	
1		rview bjectives and functions, Ev oments leading to modern OS,		02 hrs
2	Processes ManagementProcesses- Definition, States, Description, Control, Security issues, Threads, Symmetric multiprocessing.ConcurrencyPrinciples of concurrency, Mutual exclusion, Semaphores, Monitors, Message passing, Readers problem, Deadlock- Prevention, Avoidance and Detection.SchedulingUniprocessor scheduling- Types of processor scheduling, Scheduling algorithms, Multiprocessor scheduling,			
3	Memory Management and Virtual MemoryMemory management- Requirements, Partitioning, Paging, Segmentation, Security issues.5 h			
4	Virtual memory - Hardware and control structures, Operating SystemFile Management of LinuxOverview, Organization, Directories, Sharing, Record blocking, File systemsecurity Linux file management			7 hrs
5	Distributed Operating Systems Distributed System Goals, Types Of Distributed Systems, and Styles & Architecture Of Distributed Systems, Threads, Virtualization, Clients, Servers, Code Migration, and Communication in Distributed Systems.			
6	Distributed Systems & Synchronization7 hrsClock Synchronization, Logical Clocks, Mutual Exclusion, Global Positioning Of Nodes, Data-Centric Consistency Models, Client-Centric Consistency Models, Consistency Protocols.7 hrs			
7	Resilience,, Reliable	curity: Introduction To Fa Client-Server Communica buted Commit, Recovery, Secu gement	ation, Reliable Group	6 hrs

Text Books:

- 1. William Stallings: Operating Systems- Internals and Design Principles, 6th Edition, Prentice Hall, 2008.
- 2. Gary Nutt, NabenduChaki, SarmisthaNeogy: Operating Systems, 3rd Edition, Pearson Education, 2004.
- 3. "DISTRIBUTED SYSTEMS", Second edition, Andrew S.Tanenbaum, Maarten Van teen.
- 4. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3rd Edition, Addison Wesley Professional, 2013.
- 5. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2007.

References:

- 1. Abraham Silberschatz, Galvin, Gagne: Operating System Concepts, 8th Edition, Wiley, 2008.
- 2. Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems, Design and Implementation, 3rd Edition, Prentice Hall, 2006.
- 3. Charles Crowley: Operating System, design oriented approach, 2004.

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab Activity	20
Total	50

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/batch
1	Demonstration of UNIX commands related to processes, files and memory	2
2	Implementation of Process control activities (fork,wait,exit,vfork)	2
3	Race Condition	2
4	Inter Process Communication (IPC): Pipes and FIFO	2
5	5 Implementation of Multi-threading, File and record Locking	
6	Process synchronization and deadlock	2
7	Memory management	2

Program: Master of Technology Semester: I			Semester: I		
Course Title: Problem Solving Laboratory		Course Code: 21ECSP706			
L-T-	L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week		
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100		
		Lab:42hrs	Exam Duration: 3 hrs		
		Content			
1	Introduction: Basic concept of problem solving with frame work, applying the frame work to				
2	applications. Creation and Manipulation	on of Data Structures			
	Introduction to data struc		es,		
	Linked Lists: Singly linked list, doubly linked list. Circular Singly and doubly Linked lists and Applications of linked list.				
	Stacks and Queues : Implementation using different linked list and Applications of stacks and queues.				
	Trees : Introduction to t Applications of trees	rees, Binary search tre	es, binary tree and tree traversals,		
3	Variants of Tree Data Str	uctures: (Advanced Dat	a structures)		
	Dictionaries, Skip lists, Priority queues, Heaps, Leftist trees, AVL, Red Black, B- Trees, Alternative decision tree, Radix trees and Applications.				
Ref	erence Books:				
1.Her	mant Jain, Problem Solving i	n Data structures and Al	gorithms Using C,		
Taran	n Technologies Private Limite	d, 2016			
2. Th	omas H. Cormen, Charles E.	Leiserson, Ronald L. Rive	est, and Clifford Stein.		
2	009. Introduction to Algorith	nms, Third Edition (3rd e	d.). The MIT Press		
3. Da	ta Structures Using C and C+	+ Langsam and Tanen	baum, PHI Publication.		

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

ISA (80%)	Assessment	Weightage in Marks	
	Exercises (4-Evaluation)	50	
	Structured Enquiry(1-evaluations)	30	
ESA (20%)	-	20	
	Total	100	

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	Category: Demonstration		Total Weightage: 0	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Illustration of problem- solving framework	1	0	
	Learning Outcomes: The students should be abl Explain problem solv Apply problem solv	lving frame work	o solve problem	Chapter 1
2	Demonstration of linked lists	1	0	
	Learning Outcomes: The students should be abl Discuss different ty Identify the suitable	pe of liked lists	ve a given problem	Chapter 2
5	Demonstration of data structures	1	0	
	Learning Outcomes: The students should be abl Describe stack, que Apply suitable data	eue and binary tre	ee data structures plement application	Chapter 2
8	Demonstration of Advanced data structures	8	0	
	 Learning Outcomes: The students should be able Explain skip list, red data structures Recognize suitable a course project 	and black trees a	nd other advanced ucture to implement	Chapter 3

Category: Exercise		Total Weightage: 20		No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
17	Implementation of linked list	1	8	
	Learning Outcomes: The students should be able to: • Design problem solving frame work with suitable linked list. • Implement the given application using the identified linked list			Chapter2
18	Implementation of basic112data structures112			
	 Learning Outcomes: The students should be abl Design problem solvestructure Implement the give data structure 	Chapter 2		
Category:	Structured Enquiry	Total Weightage	:: 30	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
19	Implement of given application on online coding platform using stack and queue data structures	1	15	
	 Learning Outcomes: The students should be able to: Design problem solving frame work to implement the application Execute the application on Hanker rank platform 			Chapter 2

20	Implement of given application on online coding platform using binary tree data structure	1	15	
	Learning Outcomes: The students should be abl Design problem so application using bi Execute the applica	olving frame wor nary search tree.	k to implement the nkplatform	Chapter 2
Category:	Category: Course project Total Weightage: 30		No. of lab sessions: 2	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
21	Course project using advanced data structures	1	10	
	 Learning Outcomes: The students should be able to: Explain the features of identified advanced data structure Implement the basic operations of identified advanced data structure 			Chapter 3
23	Course project using 1 advanced data structures		20	
	Learning Outcomes: The students should be able to: Implement the course project using identified advanced data structure Articulate a technical report of course project			Chapter 3

0	KLE 1	ſechn	ological Creating Value, Leveraging Knowledge
KLE TECH	Unive	rsity	Creating Value, Leveraging Knowledge

Pro	Program: Master of Technology Semester: I				
Cou	rse Title: Python Programming Lab	CourseCode: 21ECSP707			
L-T-	P:0-0-1.5	ContactHrs: 3 hrs/week			
ISA	Marks: 80	Total Marks: 100			
		Lab : 42 hrs	ExamDuration:3 hrs		
		Content			
1	Introduction				
1	Review of HTML5 basics and CSS	3, Javascript basics			
	Python libraries :				
2	Data manipulation and processing using numpy, scipy and pandas. Data visualization				
	using matplotlib.				
	Machine Learning using Phyton				
3	Design and evaluate Machine lear	ning model			
Ref	erence Books				
1.	Jeff Forcier, "Python Web D	evelopment with Dja	ngo", 1st edition, Pearson		
	Education, 2008.				
2.	2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.				
3.	Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd				
	Edition 2010				

<u>Evaluation:</u>

Students Assessment through ISA (80%) + ESA (20%)

ISA (80%)	Assessment	Weightage in Marks
	Exercises (4-Evaluation)	50
	Structured Enquiry(1-evaluations)	30
ESA (20%)		20
	Total	100

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 10		No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Lab Marks / Experiment Session(s) per batch (estimate)		Correlation of Experiment with the theory
1	Exploring python basics	6	0	
	 Develop simple Py Use functions an Tuples and Diction Demonstrate pyt functions, and arra 	 The students should be able to: Develop simple Python programs for solving problems Use functions and represent Compound data using Lists, Tuples and Dictionaries Demonstrate python programs using control structures, functions, and arrays Use exception handling in Python applications for error 		
Category:	Exercise	Total Weightage:	40	No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
2	Python libraries: Numpy, Pandas	4	40	

	Learning Outcomes:	Chapter1		
	The students should be at			
3	 Install python libra Create basic prog problem Load the data from Use Pandas librar manipulation and Formulate solution database 			
	Visualization:Matplotlib Learning Outcomes: The students should be at 1. Learn the fundame main features.	Chapter 2		
	2. Create various plot	ts in Matplotlib.		
Category:	2. Create various plot Structured Enquiry	ts in Matplotlib. Total Weight age	: 20	No. of lab sessions: 2
Category: Expt./ Job No.			: 20 Marks / Experiment	
Expt./	Structured Enquiry Experiment / Job	Total Weight age No. of Lab Session(s) per batch		sessions: 2 Correlation of Experiment with the
Expt./ Job No.	Structured Enquiry Experiment / Job Details Design and evaluate	Total Weight age No. of Lab Session(s) per batch (estimate)	Marks / Experiment	sessions: 2 Correlation of Experiment with the
Expt./ Job No.	Structured Enquiry Experiment / Job Details Design and evaluate Machine learning model	Total Weight age No. of Lab Session(s) per batch (estimate) 2	Marks / Experiment	sessions: 2 Correlation of Experiment with the

II SEMSTER

Program: Ma	aster of Technolog	3Y	Semester: II	
Course Title: Design and Analysis of Algorithms Course Code: 218			CSC709	
L-T-P:3-0-1	B-0-1 Credits: 4 ContactHrs:5 hrs/week		/week	
ISA Marks: 5	50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42 Lab: 28hrs Exam Duration:		hrs		
Analy Class	es, Mathematica	Asymptotic Notations and I Analysis of Non-Recursive of Recursive Algorithms.	•	06 hrs
Direc	Hashing Technique Direct Address Table, Hash Table, Hash Function and Collision Resolution Techniques.			
Divid Comp Gree probl Dyna	Algorithm design techniques:Divide and conquer: General Method, Merge sort, quick sort, Matrix ComputationsGreedy Technique: General Method, Huffmann Coding, knapsack problem, Task Scheduling and minimum spanning tree.Dynamic Programming: General Method, Floyd-Warshall algorithm, String Editing, Longest Common Subsequence and shortest paths			
Back Probl Bran Appr NP- H	tracking Method: lem and Game stra ch and Bound met oximation algorith	n solving Techniques: General Method, Sum of su ategies thod: General Method, knapsa ms and Randomized algorithm plete: Examples, proof of NP-I	ck Problem, ns.	15 rs
Reference B	ooks:	Analysis of Algorithms AnanyLe		

1. T.H.Cormen, C.E.Leiserson, R.L.Rivest, C. Stein, Introduction to Algorithms, 3nd edition, MIT, 2009.

2. Michael T. Goodrich, Roberto Tamassia, Algorithm Design and Applications, Wiley Publications, 2015

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab activity	20
Total	50

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/batch
1.	Analysis of Non-Recursive Algorithms.	1
2.	Analysis of Recursive Algorithms.	1
3.	Implementation of hashing techniques	2
4.	Divide and conquer: Quick sort and Merge sort	2
5.	Greedy Technique: Minimum Spanning tree.	2
6.	Dynamic Programming: Longest Common Subsequence	2
7.	Backtracking Method: Sum of subsets	2
8.	Design, implement and analyze the algorithm for given problem	2

Prog	gram: Master of Techn	ology	Semester: II	
Cou	Course Title: Distributed and Cloud Computing Course Code: 20ECSC710		Course Code: 20ECSC710	
L-T-I	P:2-0-1	Credits: 3 Contact Hrs: 4 hrs/week		
ISA	GA Marks: 50ESA Marks: 50Total Marks: 100		Total Marks: 100	
Теас	Teaching Hrs: 32Lab: 28hrsExam Duration: 3 hrs			
1	Distributed System Models and Enabling Technologies			
	Scalable Computing over the Internet, Technologies for Network-Based Systems,			rs
	System Models for D	istributed and Cloud Comput	ng	
2	Virtual Machines and	d Virtualization of Clusters		
	Implementation Lev	vels of Virtualization, Virtu	alization Structures/Tools and	
	Mechanisms, Virtual	ization of CPU, Memory, and	/O Devices, Virtual Clusters and	rs
	Resources Managem	ent.		
3	-	itecture over Virtualized Dat	Centers	
	Cloud Computing a	nd Service Models, Archited	tural Design of Compute and 04h	rs
	Storage Clouds, Publ			
4		and Software Environments		
-			lighting prohitectural styles 04h	
	Challenges and Opportunities in cloud application, architectural styles,			
	workflows: co-ordination of multiple activities, MapReduce programming model.			
5	Cloud Resource Management			
	Delision and mashe	winner for more more	mont Applications of control	
		-	ment, Applications of control	rs
	-	-		
		•	ic thresholds, Coordination of	
	specialized autonomic performance managers.			
6	Cloud Resource Scheduling			
	Resource bundling:	combinatorial auctions for	cloud resources, Scheduling	
	.		OF h	rs
	-		art-time fail queuing, borrowed	-
	-		ines, Scheduling Map Reduce	
	applications subject	to deadlines.		
	Cloud Security			
7	Cloud Security			
7	-	Security; the top concern f	or cloud users, Privacy; privacy	
7	Cloud security risks,	•	with Converte of vietualization	rs
7	Cloud security risks, impact assessment,	Trust, Operating system sec		rs
7	Cloud security risks, impact assessment, Security risks posed	Trust, Operating system sec by shared images, Security ris	urity, Security of virtualization, 05h	rs

Text Books:

- 1. 1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Parallel Processing to the Internet of Things, 1, Elsevier, 2012
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, 1, Elsevier, 2013

References:

- 1. RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi , Mastering Cloud Computing, 1, McGraw Hil, 2013
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, 1, McGraw Hil, 2010

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA-1	15
ISA-2	15
Lab activity	20
Total	50

Laboratory Plan

Expt./Job No.	Experiment/ Job details	No. of Lab sessions/batch
1	Hypervisors (Type-I and Type-II). Virtual machines with Para/Full Virtualization	03
2	Implementation of cloud service models (IaaS, PaaS, SaaS)	02
3	Implementation of AWS core services: S3, EC2, DynamoDB, RDS, VPC, IAM.	03
4	Building containerized application - Dockers	02
5	Implementation of Cloud resource scheduling and security mechanisms	04

Program: Master of Technology Semester: II				
Course Title: Big Data Analytics Course Code: 20ECS			C711	
L-T-P	L-T-P : 2-0-1 Credits: 3 Contact Hrs: 04 hrs,		/week	
ISA N	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teac	Teaching Hrs: 32 Lab: 28hrs Exam Duration: 3 Hrs			S
1.	Introduction to Big Data Analytics: Big Data Overview - Data Structures, Analyst Perspective on Data Repositories, State of the Practice in Analytic - BI Versus Data Science, Current Analytical Architecture, Drivers of Big Data, Emerging Big Data Ecosystem and a New Approach to Analytics, Key Roles for the New Big Data Ecosystem, Examples of Big Data Analytics.			
2.	Data Analytics Lifecycle : Data Analytics Lifecycle Overview - Key Roles for a Successful Analytics Project, Background and Overview of Data Analytics Lifecycle, Phase 1 - Discovery, Phase 2 - Data Preparation, Phase 3 - Model Planning, Phase 4 - Model Building, Common Tools for the Model Building Phase.			
3.	Big Data Storage Concepts: Clusters , File Systems and Distributed File Systems, NoSQL, Sharding, Replication, Combining Sharding and Replication.			06hrs
4.	Big Data Processing Concepts : Parallel Data Processing, Distributed Data Processing, Hadoop, Processing Workloads, Cluster, Processing in Batch Mode, Processing in Real-time Mode. Map Reduce, Algorithms using Map Reduce - Matrix-Vector Multiplication by MapReduce , Computing Selections by MapReduce,			10hrs
5.	Advanced Analytical Theory and Methods: Time Series Analysis - Overview of Time Series Analysis, Box-Jenkins Methodology, ARIMA Model, Autocorrelation Function (ACF), Autoregressive Models, Moving Average Models, ARMA and ARIMA Models, Building and Evaluating an ARIMA Model.			04hrs
6.	Advanced Analytical Theory and Methods: Text Analysis - Text Analysis Steps, A Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency—Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments.			04hrs
 Text Books (List of books as mentioned in the approved syllabus) 1. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley Publications. The mas Erl, Waiid/Khattak, and Baul Bubler, "Big Data Fundamentals Concents. 				
 Thomas Erl, WajidKhattak, and Paul Buhler, "Big Data Fundamentals Concepts, Drivers & Techniques", Prentice Hall, 2015. AnandRajaraman and Jeff Ullman, "Mining of Massive Datasets", Cambridge Press, http://infolab.stanford.edu/~ullman/mmds/book.pdf. 				

References

- 1. Frank J Ohlhorst, "Big Data and Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007.

Evaluation Scheme

ISA Scheme		
Assessment Weightage in Marks		
ISA 1	15	
ISA 2	15	
Lab activity	20	
Total	50	

SI. No.	Experiments	No. of Lab sessions/ batch
1.	Hadoop Installation	2
2.	 Problem Identification (10 M) a) Learning the domain (2M) b) Assessment of resources available(2M): i. Data ii. People iii. Technology iv. Time c) Framing the Problem(Identifying Issue to be addressed)(2M) d) Developing Initial Hypothesis (2M) Identifying potential Data sources(2M) 	2
3.	Data Preparation: (10M) a) Preparing the Analytic Sandbox (2M) b) Performing ETLT(2M) c) Data Conditioning(3M) Data Visualization(3M) Design and Model Selection	2
5.	Implementation	4
5. 6.		2
0.	Presentation and Report	BACK

Q	KLE Techn	ological
KLE TECH	Universitv	Creating Value, Leveraging Knowledge

Prog	ram: Master of Tec	hnology	Semester: II	
Cour	se Title: Cryptograp	ohy and Network Security	Course Code: 21ECSC7	01
L-T-P	9: 3-0-1	-0-1 Credits: 4 Contact Hrs: 5 hrs/week		ek
ISA N	/larks: 50	rks: 50 ESA Marks: 50 Total Marks: 100		
Teach	hing Hrs: 42	Lab: 28hrs	Exam Duration: 3 hrs	
1	1 Chapter No. 1. Network Security Overview Computer Security Principles, The OSI Security architecture: Security attacks, services and mechanisms, A model for Network Security, Classical Encryption techniques: Substitution ciphers- Caesar, Monoalphabetic, Playfair and Hill ciphers, Substitution ciphers,			08 hrs
2	 Taxonomy of Cryptography and Cryptanalysis. Chapter No. 2. Data Encryption Algorithms Traditional block cipher structure, Data Encryption Standard, DES example, strength of DES, Multiple DES, block cipher design principles, Advanced Encryption Standard, block-cipher modes of operation, Stream Ciphers: RC4 and A5/1. 			08 hrs
3	 Chapter No. 3. Public-Key Cryptography and Key Management Elementary Concepts and Theorems In Number Theory, principles of public-key cryptosystems, The RSA algorithm, Diffie-Hellman Key Exchange, Elliptic curve arithmetic, Elliptic key cryptography, Key Distributions and Management, X.509 certificates, public key infrastructure 		08 hrs	
4	Cryptographic Hash Functions: applications and requirements, Hash functions based on cipher block chaining, Secure Hash algorithm, SHA3, Message authentication codes: requirements and functions, HMAC, Digital Signatures, and Digital Signature Standard.		06 hrs	
5	Chapter No. 5. Application, Transport and Network layer Security Web security considerations, Pretty Good Privacy and S/MIME, Secure Sockets Layer, HTTPs, Kerberos, SSH, IPSec overview, Encapsulating security payload, combining security associations, Internet key exchange			06 hrs.
6	802.11 WLAN Sta	Security threats and measures, mobile ndard, IEEE 802.11i Wireless Lan on, WPA and WPA2		06 hrs

Text Books:

1. William Stallings, "Cryptography and Network Security Principles And Practices", 7th Edition, Pearson, 2017.

Reference Books:

- 1. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography", 3rd edition, CRC Press, 2020.
- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2014.
- 3. Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, John Wiley and Sons, 2011

Evaluation Scheme

ISA SchemeAssessmentWeightage in MarksISA 115ISA 215Lab activity20Total50

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Implementation of substitution cipher	3
2.	Demo and practice on Crypto Library	2
3.	Implementation of symmetric key algorithm	2
4.	Implementation of asymmetric key algorithm	2
5.	Implementation Hash algorithms	2
6.	Seminar on research papers : Advanced topics of cryptography and network security	3

Prog	ram: Master of Technolo	ogy	Semester: II	
Cour	Course Title: Image and Video Processing Course Code:21ECSC		Course Code:21ECSC7	13
L-T-F	2:2-0-1	Credits: 3	Contact Hrs: 4 hrs/we	eek
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	eaching Hrs: 32 Lab: 28hrs Exam Duration: 3 hrs			
1	Fundamentals of Image	e processing and Image Transforms	: Basic steps of Image	
	processing system sam	pling and quantization of an Image	e – Basic relationship	06hrs
	between pixels. Image	e Transforms: 2 D Discrete Fourier	r Transform, Discrete	001113
	Cosine Transform (DCT)	, Discrete Wavelet transforms.		
2	Image Enhancement	: Spatial Domain methods:His	stogram Processing,	
	Fundamentals of Spati	al Filtering, Smoothing Spatial filter	rs, Sharpening Spatial	OChus
	filters. Frequency Dom	nain methods: Basics of filtering i	n frequency domain,	06hrs
	image smoothing, image sharpening, selective filtering.			
3	Image Analysis: Spatial	feature extraction, Transform featur	res, Edge detection	
	Boundary Extraction, Boundary representation, Region representation, Moment			06hrs
	representation, Structure, Shape features, Texture, Scene matching & detection,			Udilis
	Image segmentation and Classification Techniques.			
4	Basics of Video Processing: Analog video, Digital Video, Time varying Image			
	Formation models : 3D motion models, Geometric Image formation,			05hrs
	Photometric Image formation, sampling of video signals, filtering operations			
5	2-D MotionEstimation: Optical flow, pixel based motion estimation,			
	Blockmatching algorith	m, Mesh based motion Estimation, g	lobal Motion	056
	Estimation, Region based motion estimation, multi resolution motion			05hrs
	estimation.			
6	-	nd Tracking : Change detection, Sp nentation, Motion tracking in video		04hrs

Text Books:

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 3rd edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2009.
- 2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

References:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009
- 3. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.

Evaluation Scheme

ISA SchemeAssessmentWeightage in MarksISA 115ISA 215Lab activity20Total50

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions
1.	Basics of python programming with OPENCV library	02
2.	Apply Image Transforms: 2 D Discrete Fourier Transform, Discrete Cosine Transform (DCT)	02
3.	Image Enhancement in spatial domain	02
4.	Low pass and high pass filters for image enhancement.	02
5.	Image segmentation Course project allocation	02
6.	Motion estimation using optical flow and block matching algorithm.Video segmentation	02
7.	Course project reviews	02
	1	DACK

KLE Techn	ological
	Creating Value, Leveraging Knowledge

P : 2-0-1 C Marks: 50 E ching Hrs: 32 La	Course Title: Deep Learning Credits: 3 SA Marks: 50 ab: 28 hrs Content Overview of deep learning & its	Contact Hrs: 4 Total Marks: 1 Exam Duratio	.00
Marks: 50 Es ching Hrs: 32 La	SA Marks: 50 ab: 28 hrs Content	Total Marks: 1	.00
ching Hrs: 32 La	ab: 28 hrs Content		
	Content	Exam Duratio	n: 03
ntroduction to Deep Learning:			
ntroduction to Deep Learning:	Overview of deep learning & its		Hrs
		applications.	
orical background and key mi	ilestones. Introduction to Neur	al Networks :	
ear & Non-systems, Biological N	Neurons, Perceptron learning, N	eural models,	06Hrs
rning AND, OR, NOT, XOR			
Neural Network Basics:Perce	eptrons and activation function	ons. Forward	06Hrs
pagation, Back Propagation, Los	ss Functions, Gradient descent.		Coms
Convolution Neural Network	s: The Convolution Operation	, Motivation,	
Pooling, Padding, Fully Connected Layers. Deep Learning Architectures :			05Hrs
INCEPTION-V3, VGG-16, RESNET-50			USHIS
4. Training Neural Networks: Weight Initialization Techniques: Zero			
alization, Random Initialization	n, Xavier & Normalized Xavier	Initialization.	
Regularization Methods: Dropout, L1, L2, L3 regularization. Optimization			05Hrs
prithms: SGD, Adam, Rmsprop.			
5. Deep Learning Applications: Image Classification: Image representation			
&preprocessing, Convolution layers and pooling operations, Case studies on			05Hrs
Image Classification.			
· · · · · · · · · · · · · · · · · · ·			
6. Recurrent Neural Networks: Introduction to sequence modeling, Long			
short-term memory networks, applications of RNN in Natural Language			05Hrs
Processing.			

Text Books

1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning," MIT Press **References**

1. NPTEL Course Materials.

Evaluation Scheme

ISA Scheme		
Assessment Weightage in Marks		
ISA 1	15	
ISA 2	15	
Lab activity	20	
Total	50	

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions
1.	Introduction to basics	02
2.	Comparison of activation functions	01
3.	Training a neural network	01
4.	Training a DL model	01
5.	Implementation of CNN	01
6.	Image Classification using DL	01
7.	Compare DNN architectures performance for a task	01
8.	Sentiment analysis using RNN	02
9.	Course Project	04

Program: Master of Technology		Semester: II
Course Title: Mini Project		Course Code: 21ECSW718
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
	Lab: 84 hrs	Exam Duration: 3 hrs

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Conduct the survey and formulate the problem statement in selected area of research
- 2. Explore domain knowledge to collect the requirements to develop the project
- 3. Design the methodology for implementing project
- 4. Measure the performance of the research by analysing the results
- 5. Acquire soft and technical writing skills

Evaluation:

	Weightage in Marks
Review 1	10
Review 2	15
Review 3	20
Report review	05
	50
Total	100
	Review 2 Review 3 Report review

ISA Schemeand ESA

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions(3 hrs/session)
1.	Literature Survey, defining the Problem statement and objectives	09
2.	Review 1	01
3.	High level & Low level design, Methodology and Implementation	08
4.	Review 2	01
5.	Result discussion and report writing	08
6.	Review 3	01

Progr	Program: Master of Technology Semester II			
Course Title: Web Technology Laboratory Course Code: 21ECSP708			Course Code: 21ECSP708	
L-T-P: 0-0-2 Credits: 2		Contact Hrs: 4 hrs/week		
ISA N	1arks: 80	ESA Marks: 20	Total Marks: 100	
Teach	ning Hrs: 56	Lab: 56 hrs	Exam Duration: 3 hrs	
		Content		
1	Introduction			
	Review of HTML5 b	asics and CSS3, Javascript	basics	
2	MEAN Stack Frame	work:		
3	 observables, and pipes, component communications, forms, Interacting with servers using HTTP and WebSockets, Bundling and deploying applications.Node.jsIntroduction to Node.js Building servers using the http and net modules, Node modules and events, Express, Accessing Data. Building Enterprise Web Applications. 			
	Ruby on Rails: An Overview Of Ruby on Rails, Rails and HTML Forms, Form Helpers andValidation, Databases and Rails, Adding Style to an Application, Sessions.			
Refer	ences:			
1.	 Pam Selle, Tim Ruffles, Christopher Hiller, Jamie, "Choosing a JavaScript Framework", 7th Edition, Addison Wesley, 2012. 			
2.	2. Yakov Fain, Anton Moiseev, "Angular 2 Development with TypeScript", Manning Publications Company, 2016.		lopment with TypeScript", Manning	
3.	 AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", Apress, 2014. 			
4.		oy on Rails Tutorial: Learn Vesley Professional Ruby	Web Development with Rails (2nd ".	

Evaluation:

ISA and ESA Schemes			
ISA (80%)	Assessment	Weightage in Marks	
	Exercises (4-Evaluation)	40	
	Structured Enquiry(1-evaluations)	40	
ESA (20%)	-	20	
	Total	100	

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Demonstration	Total Weightage: 0.	00	No. of lab sessions: 8
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Exploring JavaScript and HTML5 basics	2	0.00	
	 Learning Outcomest The students should Use HTML tag web page. Write JavaScription 	l be able to: s attributes and CSS	3 to build a	Chapter 1
3	Angular2 PLearning Outcomes: PThe students should		0.00	Chapter2
		ding blocks of Angul s, Controllers, Servi		
6	NodeJS	2	0.00	

	ILearning Outcomes:			Chapter2
	থ্ৰThe students should be	able to:		
	 Handle HTTP requests with Node's API Accept user input from forms 			
10	Ruby on Rails	2	0.00	
	Interning Outcomes:			Chapter 3
	PThe students should be	able to:		
	 Describe core pri Use basic buildin Models, Views, C 	g blocks of Rails fi		
Category	r: Exercise	Total Weightage	: 40.00	No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
2	JavaScript HTML5,CSS	1	10.00	Chapter 1
	Learning outcomes The students should be a 1. Use HTML5,Javas 2. Create Forms and	script, and CSS3		
5	Angular2	1	10.00	
	 Learning Outcomes: The students should be Use basic building Models, Views, C Structure sites with Create Forms and 	g blocks of Angula ontrollers, Service ith routes services	es and Filters. s and Filters.	Chapter 2
8	NodeJS	1	10.00	
	PLearning Outcomes:			Chapter 2

	 The students should be able to: 1. Handle HTTP requests with Node's API. 2. Build RESTful web service and Filters. 3. Accept user input from forms and Filters . 			
12	Ruby on Rails	1	10.00	
	PLearning Outcomes:			Chapter 3
	PThe students should be	able to:		
	 Develop web app of Ruby on Rails. Use basic buildin Models, Views, C 	g blocks of Rails fi		
Category	: Structured Enquiry	Total Weightage	: 40.00	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	NodeJS, Angular2	1	20.00	
	 Develop a web application using framework Identify their own learning issues and to work on those issues Analyze and adopt appropriate client-side and server-side framework. 		Chapter 2	
13	Ruby on Rails	1	20.00	
	 Develop a web application using framework Identify their own learning issues and to work on those issues. 		Chapter 3	

SEMESTER III

Prog	Program: Master of Technology Semester: III			
Cou	Course Title: Blockchain and Distributed Ledgers Course Code: 21ECSC		801	
L-T-	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	ching Hrs: 32	Lab:28hrs	Exam Duration: 3 hr	s
1	Primitives: Proto	ckchain, Digital Money to Distribu cols, Security, Consensus, Permission chain platforms, Blockchain Archited	ns, Privacy, Types of	6 hrs
2	Chapter No. 2. Consensus Mechanisms Basic consensus mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of State, Proof of Activity, Practical Byzantine Fault Tolerance (PBFT), Federated PBFT, Consensus protocols in Blockchain platforms, Scalability issues of consensus protocols.		6 hrs	
3	Chapter No. 3. Ethereum Ethereum transactions, accounts, smart contracts, smart contract development, Solidity basics, basic contracts, DApps using Ethereum, distributed storage and IPFS, Ethereum scaling		6 hrs	
4	Chapter No. 4. Permissioned Blockchain Platforms- Hyperledger Introduction, architecture and components of Hyperledger, transactions, orderer and channels, projects and tools, Fabric membership and identity management, DApps with Hyperledger Fabric, chaincode as a smart contract		6 hrs	
5	chapter No. 5. I ermissioned blockendin i lationis corda and matteriali		4 hrs	
6	Chapter No. 6. Blockchain Applications Blockchain in Financial Software and Systems: Settlements, KYC, Insurance		4 hrs	

Reference Books:

- 1. Narayanan, Bonneau, Felten, Miller and Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.
- 2. RogenWattenhofer, "Blockchain Science : Distributed Ledger Technologies", 1st Edition, Inverted Forest Publishing, 2019
- 3. Andreas A, Gavin Wood, "Mastering Etherium: Building smart contracts and DApp", 1st Edition, O'Reilly Media, 2018.
- 4. Matt Zand, Xun Wu, Mark Anthony Morris, "Hands-On Smart Contract Development with Hyperledger Fabric V2", 1st Edition, O'Reilly Media, 2018.

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks	
ISA 1	15	
ISA 2	15	
Lab activity	20	
Total	50	

LaboratoryPlan

Expt./ No.	Briefdescriptionabouttheexperiment/job	No.ofLab.S lots
1.	Demonstration of Ethereumsmart contracts	1
2.	Solidityprogramming-Datatypes, controlstructuresandfunctions	1
3.	Deploying contract using external block chain us ing Metamask/Myetherwallet	1
4.	CreatingcustomEthereumblockchainusingGeth	2
5.	Connecting toGethnodeusingWeb3	1
6.	IPFSwithEthereumfor datastorage	1
7.	HyperledgerFabricDemo	1
8.	CourseProject	6

Pro	gram: Master of Technolo	gy	Semester: III	
Cοι	ourse Code: 21ECSC802 Course Title: Mobile Application Development			
L-T-	·P: 2-0-1	Credits:03	Contact Hrs: 4hrs/Week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теа	ching Hrs: 32	Lab: 28hrs	Exam Duration: 3Hours	
1	computing, Novel appli	cations, limitations and ecture, Radio interface	outing: Introduction to mobile d GSM architecture, Mobile e, protocols, Handover and art phones applications.	06hrs
2	 Fundamentals of Android Development: Introduction to Android: The Android 4.1 Jelly Bean SDK, Understanding the Android Software Stack, Installing the Android SDK, Creating Android Virtual Devices, Creating the First Android Project, Using the Text View Control, Using the Android Emulator, The Android Debug Bridge (ADB), Basic Widgets Understanding the Role of Android Application Components, Event Handling , Displaying Messages Through Toast, Creating and Starting an Activity, Using the Edit text Control. 			
3	The Android Debug Bridge (ADB): Basic Widgets Understanding the Role of Android Application Components, Event Handling , Displaying Messages Through Toast, Creating and Starting an Activity, Using theEditext Control Building Blocks for Android Application Design, Laying Out Controls in Containers, Utilizing Resources and Media, Using Selection Widgets and Debugging Displaying and Fetching Information Using Dialogs and Fragments.			06hrs
4	Widgets and Debugging: Using Selection Widgets and Debugging Displaying and Fetching Information Using Dialogs and Fragments Advanced Android Programming: Internet, Entertainment, and Services, Implementing drawing and animations.		06hrs	
5				06 hrs
	 Text Book: 1. Mobile Computing: technologies and Applications- N. N. Jani S chand2009. 2. B.M.Hirwani- Android programming Pearson publications-2013 References: 			
	 Android IN ACTION – Ableson, Sen, Kind and Ortiz – DreamTechPublisher.Third Edition, 2012 			

Evaluation Scheme

ISA Scheme		
Assessment	Weightage in Marks	
ISA 1	15	
ISA 2	15	
Lab activity	20	
Total	50	

Expt/		No. of Lab
Jop	Experiment/ Job details	sessions (3
No.		hrs/session)
1	Installation of the IDE Android Studio: Installing the Android	
	SDK, Creating Android Virtual Devices, Creating the First Android Project Hello World	02
2		
Z	Implementation on Using the Text View Control, Using the Android Emulator	01
3	Basic Widgets Understanding the Role of Android Application Components, Event Handling	01
4	Displaying Messages Through Toast, Creating and Starting an Activity, Using the Edit text Control.	02
5	Creating and Starting an Activity, Using the Edit Text Control Building Blocks for Android Application Design, Laying Out Controls in Containers	02
6	Utilizing Resources and Media, Using Selection Widgets, Displaying and Fetching Information Using Dialogs and Fragments.	02
7	Using Selection Widgets, Debugging Displaying and Fetching Information Using Dialogs and Fragments	01
8	Advanced Android Programming: Internet, Entertainment, and Services, Implementing drawing and animations.	01
9	Displaying web pages and maps communicating with SMS and emails.	01
10	Creating and consuming services, Publishing android applications.	01

Program: Master of	Technology	Semester III	
Course Title : Industrial/ In-House Training		Course Code: 21ECSW801	
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 18hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
		Exam Duration: 3 hrs	

Course Outcomes (COs):

- 1. Explore the tools assigned by the industry or university by applying the concepts of computer science and engineering.
- 2. Demonstrate the facilities available in the chosen tool/s by conducting the experiments
- 3. Apply Constructors/Methods/APIs of the chosen tool/s to develop the applications
- 4. Develop the report using technical report writing tool
- 5. Impart self-confidence, communication skills responsibility, commitment, teamwork spirit and trustworthy during the training.

Evaluation:

Students Assessment through ISA and ESA

ISA (50)	Assessment	Weightage in Marks
	Review 1	10
	Review 2	15
	Review 3	20
	Report review	05
ESA (50)		50
	Total	100

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions (3 hrs/session)
1.	Defining Objectives of the training , State of art of the tools and Usage of concepts in computer science and engineering	18
2.	Review 1	01
3.	Identify the tool/s, Study of Tool/s and conduction of experiments	08
4.	Review 2	01
5.	Development of Application with Result Discussion	07
6.	Review 3	01

Program: Master o	of Technology	Semester III	
Course Title : Minor Project		Course Code: 21ECSW802	
L-T-P: 0-0-8	Credits: 08	Contact Hrs: 24 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
	Lab : 336 hrs	Exam Duration: 3 hrs	

Course Outcomes :

- 1. Apply the knowledge gained to identify a problem and recognize the need of a solution for the identified problem.
- 2. Ability to create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools to complex problems with an understanding of their limitations.
- 3. Ability to participate effectively in multidisciplinary teams and contribute towards achieving the common goals of the teams.
- 4. Ability to manage projects as a member and as a leader of a team efficiently and their field and multidisciplinary environments by considering economical and financial factors.
- 5. Ability to communicate effectively with engineering community and society at large, regarding complex engineering activities in oral, written and presentation forms.

Evaluation:

ISA (50)	Assessment	Weightage in Marks
	Review 1	15
	Review 2	15
	Review 3	20
ESA (50)		50
	Total	100

ISA Schemeand ESA

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions (3 hrs/session)
1.	Requirement Gathering and Analysis, Literature Survey, defining the Problem statement and objectives	38
2.	Review 1	01
3.	High level & Low level design, Methodology and Implementation	36
4.	Review 2	01
5.	Result discussion, report and paper writing	36
6.	Review 3	01

Title of the Project:

Semester IV

Program: Master of	f Technology	Semester IV
Course Title : Proj	ect Work	Course Code: 21ECSW803
L-T-P: 0-0-20	Credits: 20	Contact Hrs: 40 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
		Exam Duration: 3 hrs

Course Outcomes:

- 1. Apply the knowledge gained to identify a problem and recognize the need of a solution for the identifiedproblem.
- 2. Ability to create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools to complex problems with an understanding of their limitations.
- 3. Ability to participate effectively in multidisciplinary teams and contribute towards achieving the common goals of the teams.
- 4. Ability to manage projects as a member and as a leader of a team efficiently in their field and multidisciplinary environments by considering economical and financialfactors.
- 5. Ability to communicate effectively with engineering community and society at large, regarding complex engineering activities in oral, written and presentationforms.

Evaluation:

ISA (50)	Assessment	Weightage in Marks
	Review 1	20
	Review 2	15
	Review 3	15
ESA (50)		50
	Total	100

ISA Schemeand ESA

Laboratory Plan

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions (3 hrs/session)
1.	Innovation and Originality, Requirement Gathering and Analysis, Literature Survey, defining the Problem statement and objectives	75
2.	Review 1	01
3.	High level & Low level design, Methodology and Implementation	54
4.	Review 2	01
5.	Result discussion, report and paper writing	54
6.	Review 3	01