

Curriculum Structure and Curriculum Content for the Academic Batch-2022-24

School /Department: Electronics & Communication Engineering

Program: Postgraduate

Table of Contents

Vision and Mission of KLE Technological University2
Program Educational Objectives/Program Outcomes and Program-Specific Objectives4
Curriculum Structure-Overall7
Curriculum Structure-Semester wise9
Semester - I9
Semester - II
Semester- III
Semester- IV
Curriculum Content- Course wise

Vision and Mission

Vision

KLE Tech-School of Electronics and Communication (VLSI Design & Embedded System) will be well recognized nationally and internationally for excellence in its educational programs, pioneering research and impact on the industry and society.

Mission

- To create a unique learning environment through rigorous curriculum of theory and practice that develops students' technical, scientific and professional skills, and qualities to succeed in wide range of electronics and computing businesses and occupations.
- To nurture spirit of innovation and state-of-the-art research to advance the boundaries of disciplinary and interdisciplinary knowledge and its applications.
- 3. To collaborate within and beyond the discipline to create solutions that benefit humanity and society.

Program Educational Objectives (PEO's)

- 1. Graduates will demonstrate peer- recognized technical competency to solve contemporary problems in the analysis, design and development of electronic devices and systems.
- 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education, and self-study.
- 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socioeconomic development of the society.

Program Outcomes (PO's)

The graduates will have,

1.	An ability to independently carry out research /investigation and development work to solve practical problems.
2.	An ability to write and present a substantial technical report/document.
3.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
4.	An ability to use modern computational tools in modeling, simulation and analysis pertaining to VLSI Design and Embedded Systems.
5.	An ability to work with integrity and ethics in their professional practice, having an understanding of responsibility towards society with sustainable development for lifetime.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2015– KLETECH School of Electronics and Communication Engineering	Document #: FMCD2004	Rev: 1.0		
Title: Curriculum structure semester wise					
VLSI Design & Embedded Systems					

Curriculum Structure-Overall

Semester		Total Program Credits: 88		
	1	Ш	ш	IV
h course code	Data Structures using C 18EVEC701 (0-0-3)	Mathematical Thinking and Logical Reasoning 15EHSC701 (<u>3-0-0)</u>	Internship/ Mini Project 17EVEI801 <u>(0-0-8)</u>	Project Phase II / Major Project 17EVEW 802 (0-0-20)
	Analog Circuits 20EVEC702 (<u>3-0-0)</u>	Automotive Electronics and Communication 19EVEC701 (<u>3-0-1)</u>		
	CMOS VLSI Design 22EVEC704 (<u>4-0-1)</u>	Real Time Embedded Systems 19EVEC702 (<u>3-0-1)</u>	Project Phase I / Minor project 17EVEW801 (0-0-10)	
Course with course	Advanced Digital Logic Design 17EVEC710 (0-0-2)	Advanced Digital Logic Verification 19EVEC703 (0-0-3)	-	
	Machine Learning 22EVEC708 (2-0-1)	Analog & Mixed Mode VLSI Circuits 21EVEC704 (3-0-0)	_	
	RISC Architectures and Programming 17EVEC705 (4-0-1)	Elective : 1 Image & Video Processing(17EVEE701) (2-0-1) 		

KL	ISO 9001: School o	FORM 2015– KLETECH Do f Electronics and cation Engineering	cument #: FMCD2004	Rev: 1.0
Tit	le: Curriculum structure semeste	r wise		Page 7 of 4
VL	SI Design & Embedded Systems			Year: 2022-24
	VLSI Design & Embedded Systems Electronic System Design 17EVEC707 (0-0-3) Testing & IC Characteriz (2-0-1) Elective : 2 Standard Cell Design & (2-0-1) Low Power VLSI Circuits Internet of Things (19EV AUTOSAR(20EVEE707) (0-0-3))	
Credits	24	26	18	20

KLE TECH. CREATING VALUE LEVERAGING KNOWLEDGE	FORM ISO 9001: 2015– KLETECH School of Electronics and Communication Engineering	Document #: FMCD2004	Rev: 1.0		
Title: Curriculum stru	Page 8 of 4				
VLSI Design & Embed	VLSI Design & Embedded Systems				

Semester: I Semester M.Tech.

	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1.	18EVEC701	Data Structures using C	Core 1	0-0-3	3	6	80	20	100	2 hours
2.	20EVEC702	Analog Circuits	Core 2	3-0-0	3	4	50	50	100	3 hours
3.	17EVEC704	CMOS VLSI Design	Core 3	4-0-1	5	6	50	50	100	3 hours
4.	17EVEC710	Advanced Digital Logic Design	Core 4	0-0-2	2	4	100	00	100	3 hours
5.	18EVEC708	Machine Learning	Core 5	2-0-1	3	4	50	50	100	3 hours
6.	17EVEC705	RISC Architectures and Programming	Core 6	4-0-1	5	6	50	50	100	3 hours
7.	17EVEC707	Electronic System Design	Core 7	0-0-3	3	6	100	00	100	3 hours
	TOTAL				24	36	480	220	700	

ISA: Continuous Internal EvaluationESA: Semester End Examination L: Lecture T: Tutorials P: Practical

_

KLE TECH. CREATING VALUE	FORM ISO 9001: 2015– KLETECH School of Electronics and Communication Engineering	Document #: FMCD2004	Rev: 1.0		
Title: Curriculum structure semester wise					
VLSI Design & Embed	VLSI Design & Embedded Systems				

Semester: II Semester M.Tech.

	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1.	15EHSC701	Mathematical Thinking and Logical Reasoning	Core 8	3-0-0	3	3	50	50	100	3 hours
2.	19EVEC701	Automotive Electronics and Communication	Core 9	3-0-1	4	5	50	50	100	3 hours
3.	19EVEC702	Real Time Embedded Systems	Core 10	3-0-1	4	5	50	50	100	3 hours
4.	19EVEC703	Advanced Digital Logic Verification	Core 11	0-0-3	3	6	100	00	100	3 hours
5.	21EVEC704	Analog & Mixed Mode VLSI Circuits	Core 12	3-0-0	3	3	50	50	100	3 hours
	17EVEE701	Image & Video Processing	Elective 1	Elective 1 2-0-1				50	100	3 hours
	19EVEE701	MEMS								
6.	19EVEE702	System on Chip			2-0-1 3	4	50			
	19EVEE703	ASIC Design								
	19EVEE704	Testing & IC Characterization								
	17EVEE703	Standard Cell Design & Layout								
_	19EVEE705	Low Power VLSI Circuits		2.0.4			50			
7.	19EVEE706	Internet of Things	Elective 2	2-0-1	3	4	50	50	100	3 hours
	20EVEE707	AUTOSAR]							
8.	19EVEW701	Mini Project	Core 13	0-0-3	3	6	50	50	100	3 hours

_

KLE TECH. CREATING VALUE LEVERAGING KNOWLEDGE	FORM ISO 9001: 2015– KLETECH School of Electronics and Communication Engineering	Document #: FMCD2004	Rev: 1.0	
Title: Curriculum structure semester wise				
VLSI Design & Embed	dded Systems		Year: 2022-24	

TOTAL	16-0-10	26	36	450	350	800	
-------	---------	----	----	-----	-----	-----	--

ISA: Continuous Internal EvaluationESA: Semester End Examination L: Lecture T: Tutorials P: Practical

Semester: III Semester M.Tech.

	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1.	17EVEI801	Internship/ Mini Project	Core 14	0-0-8	8	16	50	50	100	3 hours
2.	17EVEW801	Project Phase I / Minor project	Core 15	0-0-10	10	20	50	50	100	3 hours
	TOTAL				18	36	100	100	200	

ISA: Continuous Internal EvaluationESA: Semester End Examination L: Lecture T: Tutorials P: Practical

_

KLE TECH. CREATING VALUE LEVERAGING KNOWLEDGE	FORM ISO 9001: 2015– KLETECH School of Electronics and Communication Engineering	Document #: FMCD2004	Rev: 1.0
Title: Curriculum stru	icture semester wise		Page 11 of 4
VLSI Design & Embe	dded Systems		Year: 2022-24

Semester: IV Semester M.Tech.

	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	17EVEW 802	Project Phase II / Major Project	Core 16	0-0-20	20	40	50	100	150	3 hours
	TOTAL		0-0-20	20	40	50	100	150		

ISA: Continuous Internal EvaluationESA: Semester End Examination L: Lecture T: Tutorials P: Practical

=

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-			Page 12 of 44 Year: 2021 - 23

Semester: I Semester M.Tech.

		rstems		
Course Ti	tle: Data Structures using C		Course Code: 18EVEC701	
L-T-P: 0-0	P: 0-0-3	Credits: 3	Contact Hours: 6	
ISA Mark	s: 80	ESA Marks: 20	Total Marks: 100	
Teaching	Hours: 25	Examination Duration: 3 hrs		
Pointers r structures	 1:C language features evisited, Strings, Structures - 5, Self Referential Structures, 2:Stacks and Queues 	- Basics, Structures and functions, Arra Unions and bit fields, Files.	ys of structures, Pointers to	5 Hrs 5 Hrs
	, Representation and Applica ueues, multiple queues, prio	ations of stack. Definitions, representat rity queue. Recursion	ion and applications of linear,	
Chapter 0				5 Hrs
		s, definitions, representations. Implem	-	
		dition of long integers. Linked stacks, L	inked Queues	
Chapter 0				5 Hrs
		ecursive and iterative versions), Building	ng and searching, Threaded Binary	
	es and their applications sorts, Selection and tree sor			5 Hrs
Text Bool	(
2. F Reference 1. E 2. Y 3. F	Aaron M. Tenenbaum, et al, I Iorowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str	Data Structures using C, II Edition, PHI, Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo	in C, II Edition, University, 2008 I, 2010 c, 2010	
1. / 2. Reference 1. E 2. Y 3. F	Aaron M. Tenenbaum, et al, I Iorowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009	eed, Fundamentals of Data Structures programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo	in C, II Edition, University, 2008 I, 2010 c, 2010	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F	Aaron M. Tenenbaum, et al, I Iorowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept	eed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s.	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F	Aaron M. Tenenbaum, et al, I forowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f	eed, Fundamentals of Data Structures programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F	Aaron M. Tenenbaum, et al, I forowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C 'ashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s. Functions, structures union And bit-files	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 4. F	Aaron M. Tenenbaum, et al, I Horowitz, Sahani, Anderson-F es Balaguruswamy, The ANSI O Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s. functions, structures union And bit-files structures	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 3. F 4. F 5. F	Aaron M. Tenenbaum, et al, I Horowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s	eed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s. functions, structures union And bit-files structures of different queue data structures.	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 4. F 5. F 6. F	Aaron M. Tenenbaum, et al, I Horowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data = Programs on implementation Programs on implementation	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudor s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 4. F 5. F 6. F 7. F	Aaron M. Tenenbaum, et al, I Horowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s Programs on implementation Programs on implementation Programs on Implementation	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists of trees	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F 4. F 5. F 6. F 7. F 8. F	Aaron M. Tenenbaum, et al, I dorowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s Programs on implementation Programs on implementation Programs on Implementation Programs on Implementation	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudo s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists of trees	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + 2. + 2. + 1. E 2. \ 3. F 4. F 5. F 6. F 7. F 8. F 9. F	Aaron M. Tenenbaum, et al, I dorowitz, Sahani, Anderson-F es Balaguruswamy, The ANSI C 'ashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s Programs on implementation Programs on implementation Programs on Implementation Programs to implement differ Programming on graph	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudor s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists of trees rent sorting techniques.	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 4. F 5. F 6. F 7. F 8. F 9. F 10. F	Aaron M. Tenenbaum, et al, I Horowitz, Sahani, Anderson-F es E Balaguruswamy, The ANSI C Yashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data = Programs on implementation Programs on implementation Programs on implementation Programs to implement differ Programming on graph Programming on hashing tabl	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudor s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists of trees rent sorting techniques.	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	
1. / 2. + Reference 1. E 2. Y 3. F Lab: 1. F 2. F 3. F 3. F 5. F 6. F 7. F 8. F 9. F 10. F 11. [Aaron M. Tenenbaum, et al, I dorowitz, Sahani, Anderson-F es Balaguruswamy, The ANSI C 'ashavant Kanetkar, Data Str Richard F. Gilberg, Behrouz A Course Tec, 2009 Programs on Pointer concept Programs on string handling f Programming on files Programming on stacks data s Programs on implementation Programs on implementation Programs on Implementation Programs to implement differ Programming on graph	Feed, Fundamentals of Data Structures C programming Language, II Edition, PH uctures through C, II Edition, BPB publi . Forouzan , Data Structures: A Pseudor s. functions, structures union And bit-files structures of different queue data structures. of different types of Linked lists of trees rent sorting techniques. les queue data structures	in C, II Edition, University, 2008 I, 2010 c, 2010 code Approach With C, II Edition,	

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 13 of 44
VLSI Design & Embed	dded Systems		Year: 2021 - 23

Program: Digital Electronics			
Course Title: Analog Circuits		Course Code: 20EVEC702	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hrs		
	Content		Hrs
Chapter No. 1: Network Theorem	IS		6 hrs
		ircuit Analysis Techniques: Linearity and alent Circuits, Maximum Power Transfer,	
Chapter No. 2: First and Second C	Order circuits		4 hrs
		uation, System Characteristic equation, sentation)Frequency and Time response	
Chapter No. 3: Two Port Networl	s		4 hrs
Admittance, Impedance and Hybri	d Parameters. Transmission Paramete	ers.	
Chapter No. 4: Basic MOS Device	Physics		4 hrs
•	eration of MOS Transistor (MOSFET) ristics. MOSFET Scaling and Small Geo	.The MOS System under external Bias metry Effects. MOSFET Capacitances	
Chapter No. 5: CMOS Amplifiers			5 hrs
Biasing of MOS Stages, Realization Follower, Cascode Stage and Folde		ce Stage, Common-Gate Stage, Source	
Chapter No. 6: Current Mirrors			5 hrs
Current Mirror circuits and Model Wilson current Mirrors. Current so		ice, voltage swing). Widlar, Cascode and	
Chapter No. 7: Basic Differential	Amplifier Analysis		6 hrs
Basic differential amplifier, Comr Amplifier, Performance parameter	•	, CMRR, 5-pack and 7-pack Differential	
Chapter No. 8: Design of 5pack an Compensation.	nd 7-pack differential amplifier, Stabili	ty and Frequency Compensation, Millers	6 hrs

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 14 of 44
VLSI Design & Embed	dded Systems		Year: 2021 - 23

Reference Books:

- 1. A.S. Sedra & K.C. Smith, Microelectronic Circuits, 5th Edition, Oxford Univ. Press, 1999
- 2. Jacob Millman and Christos Halkias, Integrated Electronics, McGraw Hill,
- 3. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 4. David A. Bell, Electronic Devices and Circuits, 4th edition, PHI publication, 2007
- 5. Grey, Hurst, Lewis and Meyer, Analysis and design of analog integrated circuits, 4th edition.
- 6. Charles H Roth, Jr; Fundamentals of Logic Design, Thomson Learning, 2004.
- 7. Zvi Kohavi, Switching and Finite Automata Theory, 2ed, TMH
- 8. Ogata, Modern Control Theory, 4th ed, PHI.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise	•	Page 15 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Program: VLSI Design & Emb	edded Systems		Teaching
Course Title: CMOS VLSI Des	ign	Course Code: 17EVEC704	Hours
L-T-P: 4-0-1	Credits: 5	Contact Hours: 6 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 72 Hrs	Examination Duration: 3 hrs		
VLSI Design Flow, MOS theo MOSFETs, Threshold voltage effects: Sub-threshold condu Body Effect, Junction Leakag	equation, MOS device design eduction, Velocity Saturation and Mage, Tunneling, Temperature Dependent of the thin boomst century MOSFETS, The thin boomst	logy enhancement transistors, Comparison of BJTs and quations, MOS capacitance models, Second order Aobility Degradation, Channel length modulation, endence. FinFET device, The root cause of short dy MOSFET concept, The FinFET and a new scaling	10 hrs
Introduction to Unit Process	- An Overview, Czochralski met	thod of growing Silicon,Wafer cleaning process, tion, Ion-implantation), Basic CMOS technology - Process.	12 hrs
Chapter No. 3. DC Analysis of DC transfer characteristics of		, Noise Margin, MOS capacitance models.	04 hrs
Performance, Switch-level R	S Inverter, NAND, NOR and Co	omplex Logic Gates, Gate Design for Transient , Elmore Delay Model, Power Dissipation of CMOS er.	06 hrs
Stick Diagrams, Euler Path, L		extraction, Latch up – Triggering Prevention, Gate n Inverter Cascade, Logical effort, BiCMOS Drivers.	10 hrs
Chapter No. 6. Combinationa Pseudo nMOS, Clocked CMO	-	ual-rail Logic Networks: CVSL, CPL.	05 hrs
Chapter No. 7. Sequential CM Sequencing static circuits, Cir	-	s, Clocking- clock generation, clock distribution.	05 hrs
 Neil Weste, David Ha Sung-Mo Kang & Yus Sorab K. Ghandhi, Vi References	SI Fabrication Principles, Wiley, 2	Design, 3, Pearson Ed, 2005 Ited Circuits: Analysis and Design, 3, Tata McGraw, 2 nd edition, 1994	007
1. FinFET Modeling for	IC Simulation and Design: Using th	ne BSIM-CMG Standard	

- By Yogesh Singh Chauhan, Darsen Duane Lu, Vanugopalan Sriramkumar, Sourabh Khandelwal, Juan Pablo Duarte, Navid Payvadosi, Ai Niknejad, Chenming Hu, Elsevier Publication, 2015
- 2. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 16 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

- 3. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI, 2005
- 4. Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford Uni, 2002

Lab:

- 1. Introduction to Cadence EDA tool.
- 2. Static and Dynamic Characteristic of CMOS inverter.
- 3. Layout of CMOS Inverter (DRC,LVS)
- 4. Static and Dynamic Characteristic of CMOS NAND2 and NOR2
- 5. Layout of NAND2, NOR2, XOR2 gates (DRC, LVS).
- 6. Design a Phase Detector using D-FF
- 7. Design complex combinational circuits and analyze the performance using Cadence tool.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise	-	Page 17 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Program: VLSI Design & Embe	dded Systems		Teaching
Course Title: Advanced Digita	l Logic Design	Course Code: 17EVEC710	Hours
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 100	ESA Marks: -	Total Marks: 100	
Teaching Hours: 45 Hrs	Examination Duration: -		
Design metrics, Cost of Inte Challenges. Introduction to Characteristic curves of CMO	ing, Die size growth, Frequency, F grated circuits, ASIC , Evolution CMOS Technology, PMOS & NN S, CMOS Inverter and characteris	Power dissipation, Challenges in digital design, of SoC ASIC Flow Vs SoC Flow, SoC Design MOS Operation, CMOS Operation principles, stic curves, Delays in inverters, Buffer Design, yout diagrams. Setup time, Hold Time, Timing	10 hrs
Chapter No. 2. Digital Buildin Basic Gates, Universal Gates encoder, multiplexer, demult Transistor Logic, application o	, nand & nor Implementations. iplexer, Comparators, Parity chec f multiplexer as a multi-purpose lo	Decoder, encoder, code converters, Priority ck schemes, Multiplexer, De-multiplexer, Pass ogical element. Asynchronous and synchronous oore Modelling, Adder & Multiplier concepts,	10 hrs
Chapter No. 3. Logic Design L Evolution & importance of H Conventions, Data Types M Operators, Operands, Arrays,	DL, Introduction to Verilog, Level odules, Nets, Values, Data Types memories, Strings , Delays , para , looping, flow Control, Task, Fund	ls of Abstraction, Typical Design Flow, Lexical s, Comments, arrays in Verilog, Expressions, meterized designs Procedural blocks, Blocking ction, Synchronization, Event Simulation. Need	12 hrs
Chapter No. 4. Principles of R Verilog Coding Concepts, Ve Synthesizable Verilog Constru-	TL Design rilog coding guide lines: Combina cts, Sensitivity List, Verilog Events,	ational, Sequential, FSM. General Guidelines, RTL Design Challenges, Clock Domain Crossing.	8 hrs
Chapter No. 5. Design and sin Basic Building blocks design	nulation of Architectural building b using Verilog HDL: Arithmetic Cor Generation circuits, Control logic	locks mponents – Adder, Subtractor, and Multiplier c – Arbitration, FSM Design – overlapping and	10 hrs
Synthesizable Verilog Constru- Verilog modelling of combinat Chapter No. 5. Design and sim Basic Building blocks design design, Data Integrity – Parity non-overlapping Mealy and M Reference Books: 1. Digital Design by Mor 2. Verilog HDL: A Guide	cts, Sensitivity List, Verilog Events, ional logic and sequential logic nulation of Architectural building b using Verilog HDL: Arithmetic Cor generation circuits, Control logic oore state machine design ris Mano M, 4th Edition. to Digital Design and Synthesis by	RTL Design Challenges, Clock Domain Crossing. locks mponents – Adder, Subtractor, and Multiplier c – Arbitration, FSM Design – overlapping and	

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 18 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Program: Digital Electronics			Teaching
Course Title: Machine learn	ing	Course Code: 18EVEC708	Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1: Introduction	1		
	nine Learning? Applications of Machind Reinforcement learning, Dataset forr	ine Learning, Types of Machine Learning: nats, Basic terminologies.	05 Hrs
Chapter No. 2: Supervised I	earning		
function, The Gradient des		nd Multiple variables, Sum of squares error egression, The cost function, Classification ssion, Regularization.	10 Hrs
Chapter No. 3: Supervised I	earning: Neural Network		
		OR, AND, OR using neural network. Model m, Multi-class classification, Application-	10 Hrs
Chapter No. 4: Unsupervise	d Learning: Clustering		
Introduction, K means Cluste	ering, Algorithm, Cost function, Applicat	ion.	05Hrs
Chapter No. 5: Unsupervise	d Learning: Dimensionality reduction		
	CA- Principal Component Analysis. Appli	cations, Clustering data and PCA.	05Hrs
Chapter No. 6: Machine Lea	arning System Design		
Evaluating a hypothesis, Mo Building a Model.	odel selection, Bias and variance, error	analysis, error metrics for skewed classes.	05 Hrs
Text Book (List of books as r	nentioned in the approved syllabus)		
1. Tom Mitchell, Mach	nine Learning, 1, McGraw-Hill. , 1997		
2. Christopher Bishop	, Pattern Recognition and Machine Lear	ning, 1, Springer, 2007	
References			
•	rew Ng, Co-founder, Coursera; Adjunct ps://www.coursera.org/learn/machine	Professor, Stanford University; formerly head o -learning#	of Baidu Al
2. Trevor Hastie, Robert Ti		ts of Statistical Learning : Data Mining, Inference	ce and

Prediction, 2, Springer, 2009

KLE TECH. CREATING VALUE KLE TECH. LEVERAGING KNOWLEDGE		Rev: 1.0
Curriculum Content- Course wise		Page 19 of 44
VLSI Design & Embedded Systems		Year: 2021 - 23

Implementation Assignments:

- 1. Assignments are designed to explore the concepts like
 - Supervise and unsupervised learning,
 - Clustering,
 - Regression and estimation
- 2. Motivate students to take up open challenges like Kaggle, walmart, ect
- 3. To explore different Machine Learning Tools/ Libraries.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 20 of 44	
VLSI Design & Embe	VLSI Design & Embedded Systems		Year: 2021 - 23

Program: VLSI Design & Embedde	d Systems		Teaching
Course Title: RISC Architectures a	nd Programming	Course Code: 17EVEC705	Hours
L-T-P: 4-0-1	Credits: 5	Contact Hours: 6 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 Hrs	Examination Duration:		
	3 hrs		
		ARM7TDMI, ARM programmers' model, ruction execution.	06 Hrs
Features of ARM Instruction, Dat store instruction. Software interr Example programs, 16bit Instruct	upt instruction, Program status reg tion set-The Thumb programmer m essing instructions, Single/Multiple	ntrol instruction and Data Transfer/Load ister instruction, Conditional execution, odel, ARM-Thumb interworking, Thumb register load store instruction, Stack	06 Hrs
	and Embedded C programming: 3, Features and Memory mapping of amming using Embedded C.	LPC2148, Interfacing of Basics	04 Hrs
4. Exception Handling: Introduction, Interrupts, error cor Exception priorities, Procedures fo		ce, the vector table, Exception handlers,	04 Hrs
5. Memory Hierarchy Desi Cache basics, Miss rate and penalt	gn: ry, Cache Hierarchy, Memory Organiz	ations, Memory Hierarchy.	06 Hrs
	e design, Computer arithmetic	ion pipeline design, Branch handling principles, Static arithmetic pipeline,	08 Hrs
7. Cortex M4: Functional description, programm	er's model, memory protection unit,	nested vectored interrupt controller.	06 Hrs
8. Multi-Core Architectures	:		
Introduction to Intel Architecture, 2 Duo Processor: The CPU, Memor	-	orks, Basic Components of the Intel Core	07 Hrs
9. Current Trends in Intel A	rchitectures and Applications:		03 Hrs
Seminar on current trends in Intel	Architectures		031113

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 21 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Text Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan, Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments:
 - http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following,
 - i. 8-bit data transfer and exchange
 - ii. 16-bit data transfer and exchange
 - iii. 32-bit data transfer and exchange
- 2. Write an ALP for Tables and lists to do following,
 - i. Add an entry to a list
 - ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine,
 - i. Ascending order
 - ii. Descending order
- 4. Write an ALP for following,
 - i. Finding length of a string
 - ii. Compare two strings for equality
 - iii. To find whether given string is palindrome
- 5. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 6. Write a 'C' program & demonstrate an interfacing of Seven segment to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of Keypad to LPC2148
- 10. Write a 'C' program & demonstrate interface DAC to LPC2148
- 11. Develop a code for electronic voting machine.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 22 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- 3. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- **2.** LPC2148 board manual by ALS, Bangalore.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 23 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Program: VLSI Design & Embe	edded Systems		
Course Title: Electronic Syster	n Design	Course Title: 17EVEC707	
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	
ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hours: 25 Hrs	Examination Duration:		
To level specifications, Block Schematic capture	k level specifications, Timing of mice	o architecture, Verification and test plan,	05 Hrs
Simulation, Advanced simulat	ion, Signal Integrity		05 Hrs
PCB layout- Floor planning, co	mponent pre planning, PCB printing-	2 layer	05 Hrs
Functionality and performance check, Failure analysis, Validation and system integration		05 Hrs	
System Analysis		05 Hrs	
	ith, Microelectronic circuits, Oxford, 1 d Circuit Design, McGraw Hill, 1991.	998.	

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 24 of 44	
VLSI Design & Embe	VLSI Design & Embedded Systems		

Semester: II Semester M.Tech

Course Title: Mathematical Th	nking and Logical Reasoning	Course Code: 15EHSC701
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 hours	
1. Quantitative Aptitude		10 hrs
2. Analytical Puzzles		4 hrs
3. Syllogistic Logic		3 hrs
4. Verbal Reasoning		9 hrs
5. Visual Reasoning		6 hrs
6. Advanced Lateral Thir	king	8 hrs
Text Books		
1. A Modern Approach to	o Verbal and Non – Verbal Reasoning – R. S. Age	arwal, Sultan Chand and Sons, New Delhi.
2. Quantitative Aptitude	– R. S. Aggarwal, Sultan Chand and Sons, New I)elhi

Reference Books:

- 1. Verbal and Non Verbal Reasoning Dr. Ravi Chopra, MacMillan India
- 2. Lateral Thinking Dr. Edward De Bono, Penguin Books, New Delhi

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 25 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Program: VLSI Design & Embedded Syste	ms		
Course Title: Automotive Electronics and	Communication	Course Code: 19EVEC701	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 hrs	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 3 hrs		
Chapter No: 1.Automotive Systems, I	Design cycle and Automotive industry ov	verview	9 hrs
global challenges. Role of technology ir modern automotive systems and need fo in modern automobiles, Introduction fundamentals, Steering Control, ,Overvie	e functional domains and their requirement A Automotive Electronics and interdisciplin r electronics in automobiles and application to power train, Automotive transmission w of Hybrid Vehicles, ECU Design Cycle : Ty amples of ECU on Chassis, Infotainment, Body	ary design. Introduction to areas of electronic systems s system ,Vehicle braking pes of model development	
Chapter No: 2. Embedded system in A	Automotive Applications & Automotive	safety systems	10 hrs
grade processors ex: Renesas, Quorivva, systems in Engines , Development of c Procedure to generate maps, Fuel m	hitectural attributes relevant to automotiv and Infineon. EMS: Engine control functic ontrol algorithm for EMS, Look-up tables aps/tables, Ignition maps/tables, Engine Automobiles: Active and Passive safety sys	ns, Fuel control, Electronic and maps, Need of maps, calibration, Torque table,	
Chapter No: 3. Automotive Sensors a	nd Actuators		9 hrs
Smart Nodes, Examples of sensors: Acce Vehicle speed sensor, Throttle position se oxygen concentration sensor, Throttle p	Sensor error, Redundancy of sensors in E elerometer (knock sensors), wheel speed ser ensor, Temperature sensor, Mass air flow (M late angular position sensor, Crankshaft an or. Actuators: Engine Control Actuators, Sole	nsors, Engine speed sensor, AF) rate sensor, Exhaust gas gular position/RPM sensor,	
Chapter No: 4. Automotive communi	cation protocols		10 hrs
	n protocols : need for communication in Autorotive, CAN Bus logic ,CAN frame formats, CAN bu		
Chapter No: 5. Advanced Driver Assis	tance Systems (ADAS) and Functional sa	afety standards	7 hrs
Collision Warning, Automatic Cruise C	ADAS):Examples of assistance applications: Control, Pedestrian Protection, Headlights nous vehicles. Functional Safety: Need for t life cycle, safety by design, validation.	Control, Connected Cars	
Chapter No: 6. Diagnostics			5 hrs
adjustments, Self-diagnostic system. Fau Diagnosis, Diagnostic procedures and se Concept of DTCs, DLC, MIL, Freeze Frame UDS.	iring system and Multiplex wiring system It finding and corrective measures, Electror equence, On board and off board diagnos s, History memory, Diagnostic tools, Diagnos	tic transmission checks and tics in Automobiles, OBDII,	
Text books [.]			

Text books:

1. William B. Ribbens, Understanding Automotive Electronics, 6, Newnes Publications, 2003

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 26 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

2. Denton.T , Automobile Electrical and Electronic Systems, Edward Arnold , 1995

References:

- 1. William T.M , Automotive Electronic Systems, Heiemann Ltd., London , 1978
- 2. Nicholas Navet , Automotive Embedded System Handbook, CRC Press , 2009

Lab:

- 1. Demonstration of cut section modules: Engine, Transmission , Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 4. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- 5. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 27 of 44	
VLSI Design & Embedded Systems			Year: 2021 - 23

Program: VLSI Design & Emb	edded Systems		
Course Title: Real Time Embe	edded System	Course Code: 19EVEC702	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 45 Hrs	Examination Duration: 3 hrs		
Processor in a system, Syster	m Memories, System I/O, De-bouncing,	ample Systems, Hardware Requirements- Other Hardware Devices (A/D, D/A, USART, ervicing Mechanism & Interrupt Latency.	12 Hrs
		t Microcontrollers, MPC577XK for ADAS, motive Only)	10 Hrs
• • •	eground/background systems, full featu	rred rtos, POSIX, buffering data, mailboxes, stack management, dynamic allocation.	04 Hrs
 4. Case Studies: Mucos/ VX Works Functions – System level, task service, time delay, memory allocation, semaphore, mailbox, queue. Example systems: Coding for Automatic chocolate vending machine using MUCOS & Coding for sending application layer byte streams on a TCP/IP Network using Vx Works. 			06 Hrs
5. Process of Embedded System Development: Development process, requirements engineering, design, implementation, integration & testing, packaging, configuration management, managing embedded system development, embedded system fiascos.			08 Hrs
-	cal & environmental issues ars on current trends in the field of RTE	S, ethical, & environmental issues.	05 Hrs

Text Books

- 1. Philip. A. Laplante, "Real-Time Systems Design and Analysis- an Engineer's Handbook"- Second Edition, PHI Publications.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw Hill, New Delhi, 2003.
- 3. Dr. K.V.K K Prasad, "Embedded Real Time Systems: Concepts Design and Programming", Dreamtech Press New Delhi, 2003. **References**
- 1. Joseph Yiu, "The Definitive guide to ARM CORTEX –M3 & CORTEX-M4 Processors", Elsevier, Newnes, 2014.
- 2. Steve Furber "ARM System -on Chip Architecture" Second Edition, Pearson Education
- 3. David E. Simon, "An Embedded software primer", Pearson Education, 1999..
- 4. David A. Evesham, "Developing real time systems A practical introduction", Galgotia Publications, 1990
- 5. William Hohl, "ARM Assembly Language Fundamentals & Techniques", CRC Press
- 6. C. M. Krishna, "Real Time Systems" MGH, 1997
- 7. Jane W.S. Liu, "Real-Time Systems", Pearson Education Inc., 2000

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 28 of 44	
VLSI Design & Embedded Systems			Year: 2021 - 23

Program: VLSI Design & Embedded Systems			
Course Title: Advanced Digital Logic Verification		Course Code: 19EVE	C703
L-T-P: 0-0-3 Credits: 3 Contact Hrs: 6 hrs/w		veek	
ISA Marks: 100 ESA Marks: Total Marks: 100			
Teaching Hrs: 50	Exam Duration: 3 hrs		
Chapter No. 1. Verification Concepts Concepts of verification, importance of verification generation, functional verification approaches, ty Coverage: Code and Functional coverage, coverage	pical verification flow, stimulus		10 hrs
Chapter No. 2. System Verilog – Language Constr System Verilog constructs - Data types: two-state of Structs, enumerated types. Program blocks, module	data, strings, arrays: queues, dyna		10 hrs
Chapter No. 3. System Verilog – Classes & Random SV Classes: Language evolution, Classes and ol Inheritance, and encapsulation, Polymorphism. Ra Constraint Driven Randomization.	bjects, Class Variables and Me		12 hrs
Chapter No. 4. System Verilog – Assertions & Cove Assertions: Introduction to Assertion based verifica verification : Motivation, Types of coverage, Cover (event sampling.	tion, Immediate and concurrent a	-	8 hrs
Chapter No. 5. Building Testbench Layered testbench architecture. Introduction to Universal Verification Methodology, Overview of UVM Base Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM environment structure, Connecting DUT- Virtual Interface			10 hrs
 References: System Verilog LRM Chris Spear, Gregory J Tumbush - SystemVerilanguage features - Springer, 2012 Step-by-Step Functional Verification with S Clara, CA Spring 2008 Tools: 1. NC Verilog, 	systemVerilog and OVM by Sasan I		

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0	
Curriculum Content- Course wise			Page 29 of 44	
VLSI Design & Embe	dded Systems	VLSI Design & Embedded Systems		

Program: VLSI Design & Embedded Sys	tems				
Course Title: Analog and Mixed mode VLSI Circuits Course Code: 21EVEC704					
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 40	Examination Duration: 3 hours				
Chapter 01: Basic Current reference, mode bandgap reference	Chapter 01: Basic Current reference, and Voltage (Bandgap) reference circuits, OPAMP based references, Current (mode bandgap reference				
•	Chapter 02: Bidirectional analog switch, Sample and Hold circuit, Basic Comparator architecture, non-idealities (offset error, bandwidth consideration), Dynamic comparator, Sense amplifier				
Chapter 03: DAC architecture, Weighted Resistor and R-2R network, their Limitations, Current source based DAC			07		
Chapter 04: ADC basics, Flash ADC, Tra Chapter 05: Pipeline ADC architecture, a	cking ADC , Dual slope ADC, SAR ADC, an	d their applications	10		
Chapter 05. Pipeline ADC arcintecture, a			06		
Chapter 06: PLL-operating principles, F stability issues, Jitter in PLL.	Phase detector and VCO; Phase freque	ency Detector, Charge pump models,	08		
Text Books					
 Phillip. E. Allen, Douglas R. Holberg, "CMOS Analog circuit Design" Oxford University Press, 2002. Baker, Li, Boyce, "CMOS: Circuit Design, Layout and Simulation", Prentice Hall of India, 2000 					
Reference Books					
2. J. Rabaey, Digital Integrated Circuit					
 C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979. B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001 					

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise			Page 30 of 44
VLSI Design & Embed	VLSI Design & Embedded Systems		

nrs
nrs
rs
irs
rs
nrs
nrs
ducati

2. Al. Bovik, Essential guide to Video Processing, Academic Press

Implementation:

Implementation assignments are designed using opencv/c++ to explore the concepts like

- 1. Image enhancement techniques
- 2. Image transforms.
- 3. Image restoration technique
- 4. Develop an image processing application to assist

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 31 of 44
VLSI Design & Embed	dded Systems		Year: 2021 - 23
a. ADAS b. Agriculture			

- c. Defense
- d. Health Care
- e. Surveillance and Forensics
- f. Remote sensing
- 5. Track an object in video
- 6. Optimal use of surveillance video

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 32 of 44	
VLSI Design & Embedded Systems		Year: 2021 - 23	

Program: VLSI Design & Embedded Systems Course Title: MEMS Course Code: 19EVEE701 L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 **Teaching Hrs: 40** Exam Duration: 3 hrs Hrs No Content **Overview of MEMS and Microsystems** 1 Evolution of Microsystems, Miniaturization, Applications, Working principles of Microsystems: Introduction 5 to Micro-sensors, Micro-actuation, Example of MEMS with Micro-actuators - Airbag Micro-fabrication Different structures used for MEMS devices (combination of Mechanical, electrical), How to create these 2 structures 2 Materials for MEMS and Microsystems: Silicon as a preferred material, Silicon compounds, GaAS, Quartz, Polymers, piezo-resistors; Machining processes (Bulk, Surface and LIGA processes). Unit processes in VLSI, Oxidation, Diffusion, 8 Deposition, Etching, Photolithography Sensing Techniques and Examples: PZR, PZE, and Capacitive sensing techniques, Modeling, Design and 3 Analysis with example for each technique. Numerical problem for each technique. 10 Case studies – MEMS resonator, PZR accelerometer (Commercial) 4 5 Scaling laws in miniaturization: Introduction to scaling, scaling in geometry, electrostatic forces, EM forces, 5 Electricity, Numerical problems. 4 Modeling: Modeling techniques: Mathematical modeling, Electrical modeling (Lumped modeling), Mechanical Modeling, MEMS CAD tools. 6 MEMS as Inductor, Capacitor, Micro-Characterization. 6 Text Book: "MEMS and Microsystems - Design and Manufacture", Tai-Ran Hsu, TMH Edition

References:

"Micro system Design", Stephen D. Senturia, Kluwer Academic Publishers, 2001.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise			Page 33 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Prograr	m: VLSI Design & Testing			
Course	Title: System on Chip		Course Code: 19EVEE702	
L-T-P: 2	2- 0-1	Credits: 3	Contact Hours: 4 Total Marks: 100	
CIE Ma	rks: 50	SEE Marks: 50		
Гeachir	ng Hours: 50	Examination Duration: 3 hours		
1.	 Verification and Technology Options: Overview of verification, challenges in verification of SOC, Simulation technologies, Static technologies, Formal technologies, Physical verification and analysis, comparing verification options. 			10 hrs
2.	Verification Methodology: Verification plans, Testbench creation, Testbench migration, Verification languages, Verification device test, System level verification, Verification IP Reuse, Verification approaches.			10 hrs
3.	System level Verification: System design, System verification, Applying the system level testbench, System testbench migration, Bluetooth SOC.		10 hrs	
4.	Static Netlist Verification: Netlist verification, Bluetooth SOC arbiter, Equivalence checking, Equivalence checking methodology, RTL to RTL verification, RTL to Gate level netlist verification, Gate level netlist to Gate level, Static timing verification and analysis.		10 hrs	
5.		g: Importance of system on chip testing, SOC test issues, FPGA Testing: Overview of FPGA, roaches, BIST of programmable resources, Embedded processor based testing.		10 hrs
Text Bo	ooks			
1.	Prakash Rashinkar, Peter Paters	on, Leena Singh, " SOC Verification –Methodo	logy and Techniques", Springer 2	2000

2. Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.

Reference books

Г

- **1.** J-M. Berge, O. Levia, J. Rouillard: Hardware/Software Co-Design and Co-Verification, Kluwer, 1997.
- 2. M. L. Bushnell and V. D. Agrawal, Essential of Electronics Testing for Digital, Memory and Mixed-Signal Circuits, Kluwer Academic Publishers, 2001.
- 3. Thomas Kropf, "Introduction to Formal Hardware Verification", Springer 1999.

Back to SEM II

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-		Page 34 of 44	
VLSI Design & Embedded Systems			Year: 2021 - 23

Course Title: ASIC Design		Course Code: 19EVEE703	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
	Content		Hrs
Chapter No. 1. Introduction to ASIC ASIC types, design flow, economics of	ASIC		4 hrs
Chapter No. 2. ASIC design library an Transistor as register, transistor paras Sequential logic cells, I/O cell.	-	ata Path Elements, Adders, Multiplier,	5 hrs
Chapter No. 3. Logic Synthesis and Si Logic synthesis, FSM synthesis, structu		alysis, delay models	5 hrs
Chapter No. 4. ASIC Construction Flo Physical Design, System Partitioning, E		-	5 hrs
Chapter No. 5. Floor planning and pla Floor planning tools, I/O and power pl improvement, Time driven placement Special Routing, Circuit Extraction and	anning, clock planning, placeme methods. Physical Design flow	ent algorithms, iterative placement global Routing, Local Routing, Detail Routing,	5 hrs
Text Books:			
 M.J.S. Smith, - "Application - Specifi Randall L Geiger, Phillip E. Allen, "No International Company, 1990. References: 	-	n Education, 2003. niques for Analog and Digital Circuits", McGraw	Hill
1. Jose E.France, Yannis Tsividis, "Desi Hall, 1994.	gn of Analog-Digital VLSI Circuit	s for Telecommunication and signal processing	", Prentice
2. Andrew Brown, - "VLSI Circuits and	Uranesic, "Field Programmable Analog VLSI Signal and Informat	Gate Arrays"- Kluwer Academic Publishers, 199 ion Processing ", McGraw Hill, 1994.	92.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 35 of 44	
VLSI Design & Embe	VLSI Design & Embedded Systems		Year: 2021 - 23

Contact Hrs: 4 hrs/week Total Marks: 100 Hrs ification, functional verification, test bench flow, stimulus generation, direct testing,
Hrs Ification, functional verification, test bench flow, stimulus generation, direct testing,
10 hrs ification, functional verification, test bench flow, stimulus generation, direct testing,
10 hrs ification, functional verification, test bench flow, stimulus generation, direct testing,
ification, functional verification, test bench flow, stimulus generation, direct testing,
10 hrs vs: queues, dynamic and associative arrays, ng blocks, modports.
12 hrs nd Methods, Class instantiation, Inheritance, ndom Testing. Randomization: Constraint
8 hrs and concurrent assertions. Coverage driven t, Cross Coverage, Concepts of Binning and
10 hrs ion Methodology, Overview of UVM Base aging in UVM, UVM environment structure,
n a ti

3. Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis Inc. Santa Clara, CA Spring 2008 Tools: 1. NC Verilog, NC Sim, VCSMX for System.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 36 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Program: VLSI Design & Embedded Systems			
Course Title: Standard Cell Design and Layout	Course Code: 17EVEE703		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 24		Exam Duration: 3 hrs	
Chapter No. 1. Introduction IC design flows . Use of stand paradigms. Introduction to memory types and construction		esign and Gate array	8 hrs
Chapter No. 2. Standard cell library composition and usage Types of standard cell elements. Logical and functional ele elements and register files. (Flip flop and latch design). Da flows. Drive strength and cell families. Layout of library el Management cells.	ements, primitives and complex ta path elements. Library size v	s. usage in standard	8 hrs
Chapter No. 3. Standard cell characterization Usage of standard cells by various tools. Information needed at each stage of design flow. Characterization parameters, setup and runs across PVT corners. Library representation formats. (Gate level simulation, synthesis, timing, layout, timing, LVS, DRC)			8 hrs
References: Standard cell and memory library documentation	on by Vendors 90nm EDK library		

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise			Page 37 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Course Title: Low Power VLSI Circu	its	Course Code: 19EVEE705	
L-T-P: 2-0-1	Credits: 3	Contact Hours:4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hour	rs	
	design: Need for Low Power VLSI Chips er, dynamic power dissipation in CMOS	, sources of power dissipation. Device and 5. Power Estimation.	6Hrs
2: Power analysis: Simulation Pow Probabilistic power analysis	er Analysis, Spice circuits simulator, gat	te level logic simulator,	5Hrs
3: A new CMOS driver model for drivers and transmission lines: a bra	,	ion analysis, low power design of off-chip	5Hrs
4: Different levels of power optim	ization		7Hrs
Low Power Design; circuit Level, logic Level, Low Power Architecture.		7 11 5	
5: Floor plan design with low power circuits for low power	r considerations, optimal drivers of hig	h-speed low power ics, retiming sequential	5Hrs
	Clock distribution, single driver versus nent,switching activity reduction, paral	s distributed buffers. Power management: Ilel architecture.	4Hrs
	es for power reduction: Algorithm mization, architecture level estimation	and architectural level methodologies- and synthesis, Current trends	8Hrs
Text Books			
1. Gary K. Yeap, "Practical Lo	w Power Digital VLSI Design", KAP, 200	2.	
2. Rabaey, Pedram, "Low pov	ver design methodologies" Kluwer Aca	demic, 1997.	
Reference Books:			
1. A. Chandrakasan and R. Br	odersen, "Low Power CMOS Design".		

- 2. Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", TMH, 2003 (Third Edition).
- 3. Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.
- 4. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 38 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Course Title: Internet of Th	ings	Course Code: 19EVEE706	Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 25 Hrs	Examination Duration:		-
	L		4
Chapter No. 1			
Introduction to IoT			
Defining IoT, Characteristic	s of IoT,		
What is the IoT and why is i			
Elements of an IoT ecosyste	em.		
Technology and business di	rivers.		
IoT applications, trends and	l implications.		
Physical design of IoT, Logic	cal design of IoT, Functional blocks o	f IoT, Communication models & APIs	
Chapter No. 2			
IoT Architecture: State of t	he Art		
History of IoT. M2M – Macl	nine to Machine, Web of Things, IoT	protocols	
Applications:		P	
	ing, Remote Controlling,Performanc	e Analysis.	04 hrs
Chapter No. 3			4
The Layering concepts , lo	Communication Pattern, IoT prote	ocol Architecture, The 6LoWPAN,Security aspects in	
IoT			
Chapter No. 4			6
IoT Application Developme	ent:		
Application Protocols			
MQTT, REST/HTTP, CoAP, N	1ySQL		
Chapter No.5			6
Case Study & advanced IoT			
	frastructures, buildings, security, In		
appliances, other IoT electr	onic equipment's. Use of Big Data a	nd Visualization in IoT, Industry 4.0 concepts.	
	Hands-on La	<u>ab</u>	
	Arduino, Android and AWS b	pased Experiments	
1. AWS Setup and ins			
	linking pattern through UART/WiFi		
	o measure the ambient light level		
	linking pattern through PHP web ser	ver.	
	surement through ADC and WiFi		
6. Controlling and int	eracting with basic actuators (relay)		

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 39 of 44
VLSI Design & Embed	dded Systems		Year: 2021 - 23

- 7. Android Application development.
- 8. Controlling of Arduino embedded system using Android App.
- 9. Motor Speed control using Embedded board and NodeMCU

Lua Programming Based Experiments

- 1. Introduction to Lua programming
- 2. Controlling inbuilt LED of ESP8266
- 3. Controlling Motion Sensor using NodeMCU module.
- 4. Using ESP8266 as Webserver
 - a. Understanding HTML Tags.
 - b. Understanding Request.
 - c. Reading Parameter Values.
 - d. Controlling LED.
- 5. ThingSpeak Cloud Data Visualization
 - a. Working with Temperature & Humidity Sensor
 - b. Working with ThingSpeak Cloud
 - c. Posting & Analyzing Sensor Data on ThingSpeak Cloud

Text Books:

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

KLE TECH. CREATING VALUE KLE TECH. LEVERAGING INVOLLEDGE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 40 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Course Code: 20EVEE707	Course Title: AUTOSAR	
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4 Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3

Content	Hrs
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.	7 hrs
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, CAN FD, CANape, Application Layer and RTE, intra and inter ECU communication, Client- Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	10 hrs
Chapter No. 4: Overview about BSW constituents BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	5 hrs
Chapter 5: MCAL and ECU abstraction Layer Microcontroller Drivers, Memory drivers: on-chip and off chip drivers, IO drivers(ADC, PWM, DIO), Communication drivers: CAN driver, LIN drivers, Flexrfay	5 hrs
Chapter 6: Service Layer Diagnostic Event Manager, Function inhibits Manager, Diagnostic communication manager, Network management, Protocol data unit router, Diagnostic log and trace unit, COMM manager.	5 hrs
Text Book (List of books as mentioned in the approved syllabus) 1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content- Course wise		Page 41 of 44	
VLSI Design & Embed	dded Systems		Year: 2021 - 23

Course	Title: Mini Project		Course Code: 19EVEW701	
L-T-P-S	S: 0-0-3	Credits: 3 SEE Marks: 50	Contact Hours: 6	
CIE Ma	ırks: 50		Total Marks: 100	
		Examination Duration: 3 hours		
1.		ass the concepts leant in a courses in t , the knowledge acquired to provide	-	
	statement of the mini-projects	· · · ·	a solution to the defined problem	
2.		hich leads to a product or model or prot	otype related to following areas (not	
	1. Embedded systems			
	2. MEMS			
	3. VLSI design			
	4. Image processing			
	5. Micro controllers			
	6. Communications			
3.	Time plan: Effort to do the proj	ect should be between 50 hours,		
Semest	ter End Evaluation (SEE)			
	Semester en	d examination (SEE) includes submission	of the project report, demonstration	
		lucted by the external and internal exam		

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 42 of 44
VLSI Design & Embed	VLSI Design & Embedded Systems		Year: 2021 - 23

Semester: III Semester M.Tech.

Program: VLSI Design & Embedded	Systems	
Course Title: Internship / Mini Pro	ject	Course Code: 17EVEI801
L-T-P: 0-0-8	Credits: 8	Contact Hours: 16
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
	Examination Duration: 3 hours	

Internship: 6 weeks of training in any reputed industry. A report has to be made and should be submitted at the end of the training.

OR

Mini-Project 3:

- 1. The project needs to encompass the concepts leant in a courses in the previous semesters, so that the student will learn to integrate, the knowledge acquired to provide a solution to the defined problem statement of the mini-projects.
- 2. Student can select a project which leads to a product or model or prototype related to following areas (not limited to these areas).
 - 1. Embedded systems
 - 2. MEMS
 - 3. VLSI design
 - 4. Image processing
 - 5. Micro controllers
 - 6. Communications

Semester End Evaluation (ESA)

Semester end examination (ESA) includes submission of the project report, demonstration of the mini-projects and viva-voce conducted by the external and internal examiner. ESA carries 50% weightage of total marks of mini-projects.

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 43 of 44
VLSI Design & Embe	dded Systems		Year: 2021 - 23

Program: VLSI Design & Embedded Syste	ms	
Course Title: Project Phase I / Minor Proj	ect	Course Code: 17EVEW801
L-T-P: 0-0-10	Credits: 10	Contact Hours: 20
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
	Examination Duration: 3 hours	
	andidates in consultation with the guides sha ion. Evaluation of the same shall be taken up	

KLE TECH. CREATING VALUE	FORM ISO 9001: 2008 – KLETECH School of Electronics and Communication Engineering	Document #: FMCD2005	Rev: 1.0
Curriculum Content-	Course wise		Page 44 of 44
VLSI Design & Embed	dded Systems		Year: 2021 - 23

Semester IV

Course Title: Project Phase II /	Maior project	Course Code: 17EVEW802
L-T-P: 0-0-20	Credits: 20	Contact Hours: 40
ISA Marks: 50	ESA Marks: 100	Total Marks: 150
	Examination Duration: 3 hours	

project work. Evaluation shall be taken up during the end of IV Semester. At the end of the Semester Project Work Evaluation and Viva-Voce Examinations will be conducted.