

Curriculum Structure and Curriculum Content for the Academic year: 2020-2024

School: Computer Science and Engineering

Program: **B.E- Computer Science and Engineering**

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program-Specific Obje	ectives5
Curriculum Structure-Overall	7
Curriculum Structure-Semester wise	8
Semester - I	8
Semester - II	9
Semester- III	9
Semester- IV	11
Semester- V	12
Semester- VI	13
Semester- VII	14
Semester- VIII	15
List of Open Electives	16
List of Program Electives	17
Curriculum Content- Course wise	19

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education recognized globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the School / Department

Department Vision

The KLE Tech- School of Computer Science and Engineering will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

- PEO: 1. Graduates will demonstrate peer recognized technical competency to solve analyze, design, develop, deploy and maintain computing solutions for contemporary problems.
- PEO: 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- PEO: 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education and self-study.
- PEO: 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

- PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- PO 2: **Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO 3: **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- PO 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO 5: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO 6: **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO 7: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO 8: **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: **Communication**: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: **Life-long learning**: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives -PSO's

PSO 1: Domain-specific knowledge: An ability to apply techniques to develop computer based solutions in the domain of data, system and network engineering.

PSO 2: **Software System Construction**: Apply design and development principles in the construction of software systems of varying complexity.

Curriculum Structure-Overall

Sem	ester				Total Pi	ogram Credits: 178	3 (44+134)	Year: 2020-	24
	I	II	III	IV	V	VI	VII	VIII	
	Single Variable Calculus 18EMAB101 (4-1-0)	Multivariable Calculus 18EMAB102 (4-1-0)	Graph Theory and Linear Algebra 15EMAB204 (4-0-0)	Applied Statistics with R 20EMAB209 (3-1-0)	Software Engineering 22ECSC301 (3-0-0)	Computer Networks-2 20ECSC303 (3-0-0)	Big Data & Analytics 17ECSC401 (2-0-1)	PE-6 XXECSE4XX (3-0-0)	Industry Training
	Engineering Physics 15EPHB101 (3-0-0)	Engineering Chemistry 15ECHB102 (3-0-0)	Discrete Mathematical Structures 19ECSC202 (3-1-0)	Microcontroller: Programming & Interfacing 21ECSC206 (1-0-3)	Computer Networks-1 19ECSC302 (3-1-0)	Distributed & Cloud Computing 20ECSC305 (2-0-1)	Information Security 20ECSC402(2-0-1)	OE XXECSO4XX (3-0-0)	18ECSI4 93 (0-0-6)
	Engineering Mechanics 15ECVF101 (4-0-0)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Computer Organization and Architecture 21ECSC201 (3-0-1)	Object Oriented Programming 20ECSC204 (3-0-0)	System Software 17ECSC302 (3-0-0)	Blockchain and Distributed Ledgers 22ECSC307 (2-0-1)	PE-4 XXECSE4XX (3-0-0)	Capstone F 20ECSW402 / Project 20EC	Industry
urse code	C Programming for Problem Solving 18ECSP101 (0-0-3)	Engineering Exploration 15ECRP101 (0-0-3)	Data Structures and Algorithms 20ECSC205 (4-0-0)	Principles of Compiler Design 19ECSC203 (3-1-0)	Machine Learning 22ECSC306 (3-0-1)	PE-2 XXECSE3XX (3-0-0)	PE-5 XXECSE4XX (3-0-0)	(0-0-1	1)
Course with course code	Basic Electrical Engineering 18EEEF101 (3-0-0)	Basic Electronics 18EECF101 (4-0-0)	Database Management System 15ECSC208 (4-0-0)	Operating System Principles and Programming 18ECSC202 (4-0-1)	Web Technologies Lab 21ECSP304 (0-0-2)	PE-3 XXECSE3XX (3-0-0)	Senior Design Project 20ECSW401 (0-0-6)		
S	Design Thinking for Social Innovation 20EHSP101 (0-1-1)	Basic Mechanical Engineering 15EMEF101 (2-1-0)	Data Structures and Algorithms Lab 19ECSP201 (0-0-2)	Exploratory Data Analysis 21ECSC210 (2-0-2)	System Software Lab 19ECSP302 (0-0-1.5)	Computer Networks Lab 20ECSP305 (0-0-1.5)	CIPE 15EHSA401 (Audit)		
	Engineering Physics Lab 16EPHP101 (0-0-1)	Professional Communication 15EHSH101 (1-1-0)	Database Applications Lab 15ECSP204 (0-0-1.5)	Object Oriented Programming Lab 20ECSP203 (0-0-1.5)	Mini Project 15ECSW301 (0-0-3)	Minor Project 15ECSW302 (0-0-6)			
					PE-1 XXECSE3XX (3-0-0)	Professional Aptitude & Logical Reasoning 16EHSC301 (3-0-0)			
					Arithmetical Thinking & Analytical Reasoning 22EHSH301 (0.5-0-0)	Industry Readiness & Leadership Skills 22EHSH302 (0.5-0-0)			
Cred its	21	23	23.5	25.5	24	26	18	17	

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	3	80	20	100	3 hours
7	16EPHP101	Engineering Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
		14-2-5	21	27	440	260	700			

Date: Program Head

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
4	15ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	15EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	3 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
		TOTAL	15-2-6	23	32	410	290	700		

Date: Program Head

Semester- III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	15EMAB204	Graph Theory and Linear Algebra	PC	4-0-0	4	4	50	50	100	3 hours
2	19ECSC202	Discrete Mathematical Structures	PC	3-1-0	4	5	50	50	100	3 hours
3	21ECSC201	Computer Organization and Architecture	PC	3-0-1	4	5	50	50	100	3 hours
4	20ECSC205	Data Structures and Algorithms	PC	4-0-0	4	4	50	50	100	3 hours
5	15ECSC208	Database Management System	PC	4-0-0	4	4	50	50	100	3 hours
6	19ECSP201	Data Structures and Algorithms Lab	PC	0-0-2	2	4	80	20	100	3 hours
7	15ECSP204	Database Applications Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
	*15EMAB233	Graph Theory and Calculus	PC	4-0-0	4	4	50	50	100	3 hours
		TOTAL		18-1-4.5	23.5	29	410	290	700	

Date: Program Head

^{*}Note: (15EMAB233) Graph theory and Calculus course offered only for Diploma students

Semester- IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	20EMAB209	Applied Statistics with R	BS	3-1-0	4	5	50	50	100	3 hours
2	21ECSC206	Microcontroller: Programming and Interfacing	PC	1-0-3	4	7	100	00	100	3 hours
3	20ECSC204	Object Oriented Programming	PC	3-0-0	3	3	50	50	100	3 hours
4	19ECSC203	Principles of Compiler Design	PC	3-1-0	4	5	50	50	100	3 hours
5	18ECSC202	Operating System Principles and Programming	PC	4-0-1	5	6	50	50	100	3 hours
6	21ECSC210	Exploratory Data Analysis	PC	2-0-2	4	6	80	20	100	3 hours
7	20ECSP203	Object Oriented Programming Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
			16-2-7.5	25.5	35	460	240	700		

Date: Program Head

^{*}Note: (15EMAB243) Vector Calculus and Linear Algebra course offered only for Diploma students

Semester- V

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	22ECSC301	Software Engineering	PC	3-0-0	3	3	50	50	100	3 hours
2	19ECSC302	Computer Networks-1	PC	3-1-0	4	5	50	50	100	3 hours
3	17ECSC302	System Software	PC	3-0-0	3	3	50	50	100	3 hours
4	22ECSC306	Machine Learning	PC	3-0-1	4	5	80	20	100	3 hours
5	21ECSP304	Web Technologies Lab	PC	0-0-2	2	4	80	20	100	3 hours
6	19ECSP302	System Software Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
7	15ECSW301	Mini Project	PW	0-0-3	3	3	50	50	100	3 hours
8	XXECSE3XX	Professional Elective-1	PC	3-0-0	3	3	50	50	100	3 hours
9	22EHSH301	Arithmetical Thinking & Analytical Reasoning	HS	0.5-0-0	0.5	1	100	0	100	3 hours
10	*15EMAB303	Statistics and Probability	PC	3-0-0	3	3	50	50	100	3 hours
		TOTAL	15.5/ 18-1-7.5	24/27	30/33	590/ 620	280/ 310	900/ 1000		

Date: Program Head

^{*} Note Statistics and Probability (15EMAB303) offered only to diploma students.

Semester- VI

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	20ECSC303	Computer Networks-2	PC	3-0-0	3	3	50	50	100	3 hours
2	20ECSC305	Distributed & Cloud Computing	PC	2-0-1	3	4	50	50	100	3 hours
3	22ECSC307	Blockchain and Distributed Ledgers	PC	2-0-1	3	4	50	50	100	3 hours
4	XXECSE3XX	Professional Elective-2	PC	3-0-0	3	3	50	50	100	3 hours
5	XXECSE3XX	Professional Elective-3	PC	3-0-0	3	3	50	50	100	3 hours
6	20ECSP305	Computer Networks Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
7	15ECSW302	Minor Project	PW	0-0-6	6	3	50	50	100	3 hours
8	22EHSH302	Industry Readiness & Leadership Skills	HS	0.5-0-0	0.5	1	100	0	100	3hours
9	16EHSC301	Professional Aptitude & Logical Reasoning	HS	3-0-0	3	3	50	50	100	3 hours
		TOTAL		16.5-0-9.5	26	27	530	370	900	

Date: Program Head

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	17ECSC401	Big Data & Analytics	PC	2-0-1	3	4	50	50	100	3 hours
2	20ECSC402	Information Security	PC	2-0-1	3	4	50	50	100	3 hours
3	XXECSE4XX	Professional Elective-4	EC	3-0-0	3	3	50	50	100	3 hours
4	XXECSE4XX	<u>Professional Elective-5</u>	EC	3-0-0	3	3	50	50	100	3 hours
6	20ECSW401	Senior Design Project	PW	0-0-6	6	3	50	50	100	3 hours
7	15EHSA401	CIPE(Audit)	HS	0-0-0	0	2	50	50	100	3 hours
		TOTAL	10-0-8	18	19	300	300	600		

Date: Program Head

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in hrs)
1	XXECSE4XX	Professional Elective-6	EC	3-0-0	3	3	50	50	100	3 hours
2	XXECSO4XX	Open Elective	OE	3-0-0	3	3	50	50	100	3 hours
3*	18ECSI493	Industry Training	PW	0-0-6	6	6	50	50	100	3hours
4	20ECSW494	Industry Project	PW	0-0-11	11	22	50	50	100	3 hours
4	20ECSW402	Capstone Project	. ••	0-0-11	11		30	30	100	3 110013
TOTA	TOTAL				17	28	150	150	300	

ISA: In Semester Assessment

ESA: End Semester Assessment

L: Lecture

T: Tutorials

P: Practical

Date: Program Head

Semester	1	II	111	IV	V	VI	VII	VIII	Total
Credits	21	23	23.5	25.5	24/27	26	18	17	178

^{*}Note students can either choose (1, 2 & 4(Capstone project) or (3 & 4(Industry project).)

List of Open Electives

Sr.No	Name of the Course	Course Code
1	Distributed and Cloud Computing (2-0-1)	(15ECSO401)
2	Database Management System (3-0-0)	(15ECSO402)
3	High Performance Computing for Engineering Applications (3-0-0)	(15ECSO404)
4	Essential of IT (3-0-0)	(15ECSO405)
5	Software Engineering (3-0-0)	(15ECSO403)
6	Big Data Analytics (3-0-0)	(18ECSO401)

List of Program Electives

Sr.No	Name of the Course	Course Code
	3 rd Year (Professional Electives- 1, 2 & 3)	
	Data Engineering	
1	Signals & Systems (3-0-0)	(21ECSE313)
2	Fundamentals of Image & Video Processing (2-1-0)	(21ECSE312)
3	Neural Networks & Deep Learning (2-1-0)	(21ECSE314)
4	Algorithmic Problem Solving (0-0-6)	(17ECSE309)
5	Computer Vision (2-0-1)	(18ECSE301)
6	Semantic Web (3-0-0)	(19ECSE303)
	Networking	
1	Internet of Things (2-0-1)	(17ECSE303)
2	Multimedia Networks (3-0-0)	(21ECSE311)
3	Data Integration & Cloud Services (0-0-3)	(21ECSE331)
4	<u>DevOps</u> (0-0-3)	(21ECSE310)
	Systems Engineering	
1	Parallel Computing (3-0-0)	(17ECSE307)
2	Quantum Computing (3-0-0)	(17ECSE306)
3	Embedded Intelligent Systems (0-0-3)	(18ECSE302)
4	The ARM Architecture (2-1-0)	(19ECSE302)
5	Robotic Process Automation Design and Development (3-0-0)	(20ECSE301)
	4 th Year (Professional Electives- 4, 5 & 6)	
	Data Engineering	
1	Social Network Analysis (3-0-0)	(18ECSE402)
2	Natural Language Processing (2-0-1)	(22ECSE403)
3	Fuzzy Set Theory (3-0-0)	(19ECSE402)
4	Natural Language Processing(NPTEL-Swayam) (3-0-0)	(22ECSE451)
5	Social Network Analysis (NPTEL- Swayam)(3-0-0)	(23ECSE452)
6	Advanced computer graphics (0-0-3)	(22ECSE433)
7	Advanced computer vision(0-0-3)	(22ECSE434)
	Networking	<u>_</u>
1	Unix Network Programming (3-0-0)	(18ECSE404)
2	Software Defined Networks (3-0-0)	(20ECSE405)
3	Cyber Security (2-0-1)	(19ECSE401)
4	Mobile and Wireless Networks (3-0-0)	(20ECSE412)
5	Wireless Communication Networks (3-0-0)	(22ECSE415)
6	Cyber Security and Privacy (NPTEL Swayam)(3-0-0)	(23ECSE454)

7	Introduction to Wireless And Cellular Communications (NPTEL-Swayam)(3-0-0)	(23ECSE455)
8	Network Security(3-0-0)	(23ECSE417)
9	AWS Cloud Fundamentals)(3-0-0)	(23ECSE418)
	Systems Engineering	
1	Software Testing (3-0-0)	(18ECSE407)
2	C# Programming & .Net (3-0-0)	(18ECSE409)
3	Advanced Parallel Computing (3-0-0)	(18ECSE408)
4	Software Architecture and Design Thinking (3-0-0)	(18ECSE410)
5	Model Thinking (3-0-0)	(18ECSE411)
6	Compiler Optimization for HPC	(22ECSE431)
7	Quantum Computing fundamentals (3-0-0)	(22ECSE416)
8	Multi-Core Computer Architecture (NPTEL-Swayam)(3-0-0)	(23ECSE453)

Curriculum Content- Course wise

Semester - I

Program: Bachelor of Engine	ering	Semester - I	
Course Title: Single Variable	Calculus	Course Code: 18EM	AB101
L-T-P: 4-1-0	Credits: 05	Contact Hours: 6hrs	/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 hrs	Tutorial: 28 hrs	Examination Duration	on: 3hrs
	Unit I		
1. Introduction to Mathemat	ical Modeling		
What is Mathematical mo	odeling, why Mathematical	modeling, use of	04 hrs
Mathematical modeling, Prod	cess of mathematical modeling	, types of modeling	
with simple examples.			
2. Functions, Graphs and Mo	dels		
Functions, types of functions	, transformations and models (Linear, exponential,	
trigonometric).			05 hrs
MatLab: Graphing functions,	Domain-Range and Interpreting	the models	
3. Calculus of functions and r	models		
Limit of a function, Infini	ite limits- graph, Continuity	and discontinuity,	
	statement, Roots of the equa	• •	
Method and Newton- Raphso	•	S	
Interpretation of derivative a	s a rate of change, All the rule	s of derivatives (List	11 hrs
only), Maxima, Minima and	optimization problems. Curva	ture and Radius of	
Curvature, Indeterminate form	ms, L- Hospital's rule-Examples		
MatLab: optimization probler	ms. Curvature problems		
	Unit II		
4. Infinite Series			
Definition, Convergence of s	eries, Tests of convergence – p	o-series, Alternating	
series. Power series, radius	of convergence, Taylor's and	Maclaurin's series,	06 hrs
Applications of Taylor's and M	laclaurin's series		
MatLab: Convergence of serie	es		
5. Integral calculus			
Tracing of standard curves in	Cartesian form, Parametric fo	rm and Polar form;	
	elation between them, evaluation		
_	Applications to find arc length		14 hrs
, , , , , , , , , , , , , , , , , , , ,	metric and polar curves). Appro	oximate integration-	
Trapezoidal rule, Simpson's 1,			
MatLab: problems on arc leng	gth, area, volume and surface a	rea	

Unit III

6. Ordinary differential equations of first order

 Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method

10 hrs

 Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7e 2010

Reference Books:

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

BACK

Progr	am: Bachelor of Engineering		Semester - I	
Cours	se Title: Engineering Physics		Course Code: 15EPHE	3101
L-T-P:	3-0-0	Credits:3	Contact Hrs: 3hrs/we	ek
ISA M	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs -40 Hrs		Exam Duration:3 Hrs	
		Unit I	ı	
	Chapter 1: Conduction in se	emiconductors		
	Atomic theory: The atom, e	electron orbits and energ	y levels, energy bands,	
	Conduction in solids: Elec	tron motion and hole	transfer, conventional	
	current and electron flow			
	Conductors, semiconducto	ors and insulators: Bo	nding force between	
1	atoms, Energy bands in diffe	erent materials.		05 hrs
-	n-type and p-type Semic	onductors: Doping, n-1	ype material, p-Type	
	material, Majority and min	ority charge carriers, Eff	ects of heat and light,	
	charge carrier density.			
	Semiconductor conductivity	y: Drift current, diffusion	current, charge carrier	
	velocity, conductivity, Hall E	ffect.		
	(Text 1 Page No 1-33)			
	Chapter 2: Junctions			
	The pn-Junctions: Junction		rrier voltage, depletion	
	region, Qualitative theory o	•		
	Biased junctions: Reverse	•	vard blased junction,	
	junction temperature effect			
	Junction currents and vol	Itages: Shockley equation	on, junction currents,	
	junction voltages.		For and and an area	
	p-n Junction Diode charact characteristics, diode param	•	: Forward and reverse	
	Diode approximations: Ide		odes niecewise linear	
2	characteristics, DC equivale		oues, piecewise inicai	10 Hrs
	DC load line analysis: DC lo		ng load resistance and	
	supply voltage.		ing road resistance and	
	Temperature Effects: Dioc	le power dissipation, f	orward voltage drop,	
	dynamic resistance.	, ,	3 17	
	Diode AC models: Junction	n capacitance, AC-equiv	alent circuits (Reverse	
	biased and forward biased),	•	·	
	Diode specifications: Diode	data sheets, low power	diodes, rectifier diodes	
	Diode testing: Ohmmeter	tests, use of digital	meter, plotting diode	
	characteristics.			

Zener diodes: Junction break down, circuit symbols and packages, characteristics and parameters, data sheet, equivalent circuits. (Text 1 Page No 34-71)

Unit II

Chapter 3: Electrostatics

Review on vectors:

Coordinate Systems, Vector and Scalar Quantities, Properties of Vectors, Components of a Vector and Unit Vectors

(Text 2 Page No 59-77)

Electric Fields:

Properties of Electric Charges, Charging Objects by Induction, Coulomb's Law, Analysis Model: Particle in a Field (Electric), Electric Field of a Continuous Charge Distribution, Electric Field Lines Motion of a Charged Particle in a Uniform Electric Field

Gauss's Law:

3

Electric Flux, Gauss's Law, Application of Gauss's Law to Various Charge Distributions, Conductors in Electrostatic Equilibrium

15 Hrs

Electric Potential:

Electric Potential and Potential Difference, Potential Difference in a Uniform Electric Field, Electric Potential and Potential Energy Due to Point Charges, Obtaining the Value of the Electric Field from the Electric Potential, Electric Potential Due to Continuous Charge Distributions Electric Potential Due to a Charged Conductor, Applications of Electrostatics

Capacitance and Dielectrics:

Definition of Capacitance, Calculating Capacitance, Combinations of Capacitors, Energy Stored in a Charged Capacitor, Capacitors with Dielectrics, Electric Dipole in an Electric Field, An Atomic Description of Dielectrics

(Text 2 Page No 690-807)

Unit - III

Chapter 4: Electromagnetics

Magnetic Fields:

Analysis Model: Particle in a Field (Magnetic), Motion of a Charged Particle in a Uniform Magnetic Field, Applications Involving Charged Particles Moving in a Magnetic Field, Magnetic Force Acting on a Current-Carrying Conductor Torque on a Current Loop in a Uniform Magnetic Field

4 Conductor, Torque on a Current Loop in a Uniform Magnetic Field,

Sources of the Magnetic Field:

The Biot–Savart Law, The Magnetic Force Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter

Faraday's Law:

10 Hrs

Faraday's Law of Induction, Motional emf, Lenz's Law, Induced emf and Electric Fields Generators and Motors, Eddy Currents (Text 2 Page No 868-969)

Text Book:

- 1. David A Bell, "Electronics Devices and Circuits", Fifth Edition, Oxford University Press.
- 2. Serway and Jewett, "Physics for Scientists and Engineers-with Modern Physics", 9th Edition, CENGAGE learning. 2014

References:

- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH
- 2. R P Feynman, Robert B Leighton, Matthew Sands, The Feynman Lectures on Physics Vol-II, Norosa Publishing House (1998).
- 3. Ben G Streetman, Solid State Electronic Devices, Prentice Hall, 1995

BACK

Progi	ram: Bachelor of Engineering		Semester - I	
Cour	se Title: Engineering Mechanic	cs	Course Code: 15ECVF102	1
L-T-P	: 4-0-0	Credits:4	Contact Hrs: 4 hrs/week	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50 hrs		Exam Duration: 3 hours	
		Unit I		
	Chapter 1: Overview of Civi	l Engineering		
	Evolution of Civil Engineerin	g		
	Specialization, scope and role	e.		04
1	Impact of Civil Engineering of	on		hrs
	National economy, environm	nent and social & cultural	fabric.	1113
	Challenges and Opportunition	_		
	Civil Engineering Marvels, Fu		ducation and Research.	
	Chapter 2: Coplanar concur	-		
	Introduction to Engineering			
	Basic idealizations – Particle,		• • • • • • • • • • • • • • • • • • • •	
	Definition of force and its el	•	_	
	of forces, Principle of transm	• • • • • • • • • • • • • • • • • • • •	sition, Newton's laws of	12
2	motion. Classification of force Resultant of coplanar cond		Nofinitions Posultant	12
	composition & Resolution o	•		hrs
	resultant of forces and resolu		•	
	of forces.	ation of a force. Numerica	ii problems on resultant	
	Equilibrium of coplanar con	current force system:		
	Conditions of equilibrium,	<u>-</u>	body diagram. Lamis'	
	theorem. Numerical problem			
	Chapter 3: Coplanar non-co	•		
	Resultant of a force system:	Moment, moment of a fe	orce, couple, moment of	
3	a couple, Characteristics of co	ouple, Equivalent force-co	ouple system, Numerical	05
3	problems on moment of f	orces and couples, on	equivalent force-couple	hrs
	system. Varignons principl	e of moments, Result	ant of coplanar- non-	
	concurrent force systems an	•		
	1 -	Unit II		
	Chapter 4: Equilibrium of a	• • •	•	
_	Conditions of equilibrium,		•	5 hrs
4	determinate beam, Reaction	• •	•	3 1113
	equilibrium of force systems	and support reactions to	r a statically determinate	
	beam. Chapter 5: Static Friction			
	Introduction, types of friction	n definition limiting fricti	on coefficient of friction	
	laws of Coulomb friction, ang			0.1
5	Wedge and belt friction the	-	=	8 hrs
	problems on, impending mo	•		
	connected bodies); wedge fr		, , ,	

6	Chapter 6: Simple Stress and Strain Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress – Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics. Unit – III	6 hrs
7	Chapter 7: Centroid of Plane Figures Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.	5 hrs
8	Chapter 8: Second moment of area (Plane figures) Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.	5 hrs

Text Book:

- 1. Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Company, New York, 1988.
- 2. Bhavikatti, S.S., and Rajasshekarappa K.G., Engineering Mechanics, 3Ed., New Age International Pub. Pvt. Ltd., New Delhi, 2008.
- 3. Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 4. Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publications, New Delhi, 2006

References:

- 1. Jagadeesh, T.R. and Jayaram, *Elements of Civil Engineering*, Sapna Book House, Bangalore, 2006.
- 2. Ramamrutham, S., *Engineering Mechanics*, Dhanpat Rai Publishing Co., New Delhi, 1998.
- 3. Singer, F.L., Engineering Mechanics, 3rd edition Harper Collins, 1994.
- 4. Timoshenko, S.P. and Young, D.H., *Engineering Mechanics*, 4th edition, McGraw Hill Publishing Company, New Delhi, 1956.
- 5. Irving H Shames, *Engineering Mechanics*, 3rd edition, Prentice-Hall of India Pvt. Ltd, New Delhi- 110 001, 1995.

BACK

Prog	gram: Bachelor of Engineering	5	Semester - I	
Cou	rse Title: C Programming for F	Problem Solving	Course Code: 18ECSF	P101
L-T-	P: 0-0-3	Credits: 3	Contact: 6 Hrs./wee	ek
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Tead	ching Hours :	Practical hrs : 84 hrs	Exam Duration: 3 Hr	·s.
	Introduction to Problem Sol	ving		
1	Introduction to algorithms /	flowcharts and its notation	ıs, top down design,	3 hrs
	elementary problems.			
	Basics of C programming lan	guage		
2	Characteristics and uses of	C, Structure of C program,	C Tokens: Keywords,	15
2	Identifiers, Variables, Const	ants, Operators, Data-types	s, Input and Output	hrs
	statements.			
	Decision Control Statements	5		
	Conditional branching state	ements: if statement, if else	e statement, else if	
3	ladder, switch statement,	unconditional branching	statements: break,	
3	continue.			12
	Introduction to Debugging Sk	kills		hrs
	Introduction to Test Driven P	Programming.		1113
4	Iterative Statements			10
-	while, do while, for, nested s	tatements		hrs
	Functions			
5	Introduction, Function declar	ration, definition, call, return	s statement, passing	10
	parameters to functions, intr			hrs
	Introduction to Coding Stand	lards		
	Arrays and Strings			
6	Introduction, Declaration,	<u>-</u>	•	15
	Operations on one dimension	• • •	dimensional arrays,	hrs
	Introduction to Code Optimiz	zation and refactoring		
	Pointers			
7	Introduction, declaring poir	, ,	•	08
	arithmetic, passing argument	<u>-</u> .	, pointers and arrays,	hrs
	passing an array to a function	n.		_
8	Structures and Unions			05
	Introduction, passing structu	res to functions, Array of stru	uctures, Unions	hrs
	t Books			
	1. R.G.Dromey, How to Solve	• • • • • • • • • • • • • • • • • • • •		
- 2	2. Yashvant Kanetkar, Let us (C ,15 th ed, BPS Publication, 20	J16.	

Reference Books:

- 1. B W Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B S Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

BACK

Progr	am: Bachelor of Engineering		Semester - I	
Cours	rse Title: Basic Electrical Engineering Course Code: 18EEEF			
L-T-P:	3-0-0	Credits: 3	Contact: 3 Hrs.	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing : 40 Hrs.		Exam Duration: 3 H	rs.
		Unit-I		
	Overview of Electrical Engineer	ring		
	Specialization, scope & role, ir	npact of Electrical Engi	neering on national	0.2
1	economy, environment, Source	es of generation, susta	inability, challenges	02 hrs
	and opportunities for electrica	l engineers, electrical e	ngineering marvels,	1115
	future challenges.			
_ 	DC Circuits			
2	Voltage and current sources, Ki	rchoff's current and vo	tage laws, loop and	05
_	nodal analysis of simple circuits	with dc excitation. Time	e-domain analysis of	hrs
	first-order RL and RC circuits.			
	AC Circuits			
	Representation of sinusoidal v	• •	• •	
3	representation, real power, rea		• •	08
	Analysis of single-phase series	•	•	hrs
	balanced circuits, voltage ar connections. power measurement			
	connections, power measureme	Unit-II	:15	
	Electrical Actuators	Oint ii		
	Electromagnetic principles, So	olenoid. Relavs. classi	fication of Electric	
	motors, DC motors-shunt, ser	• •		
4	motors – Speed Control, Ste	, , ,	•	9 hrs
	induction motor, Characteristic			
	various applications.			
	Power Electronics (Text1, chap	ter 45)		
	Introductory, Thyristor, Some	thyristor circuits, Limi	tations to thyristor	
	operation, The thyristor in prac	ctice, The fully controlle	ed AC/DC converter,	
5	AC/DC inversion, Switching d	evices in inverters, Th	ree-phase rectifier	6 hrs
	networks, The three-phase	•		
	induction motors, Soft-starting	g induction motors, DO	to DC conversion	
	switched-mode power			
	m	Unit-III	41.60	I
	Electrical Wiring, Safety and pr	•	•	05
6	Types of wiring Safety proc	=		05 bro
	Types of wiring, Safety precappliances, Electric shock, firs			hrs
	appliances, Electric Shock, Ill's	t aid for electrical SNC	icks, importance of	

	grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards.	
	Batteries:	
7	Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity,	05
	Coulomb efficiency, Numerical of high and low charging rates, Battery sizing. Numericals.	hrs

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th, Pearson Education, 2001
- 2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition
- 4. Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition

Reference Books:

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

BACK

Prog	ram: E	Bachelor of Enginee	ring			Ser	mester - I
Cour	se Titl	e: Design Thinking	for Socia	l Inn	ovation	Cou	urse Code: 20EHSP101
L-T-P	: 0-1-1	1	Credits:	2		Cor	ntact Hrs: 4hrs/week
ESA I	Marks	: 80	ISA Mar	ks: 2	20	Tot	al Marks: 100
Teacl	hing H	lrs:	Tutorial	/Pra	ictical: 56 hrs	Exa	ım Duration: 3 hrs
	dule	Topics			Assignments		Support activities / Tools
KNOWLEDGE, TOOLS & DEVELOPMENT	Course sensitization	 Introduction to Innovation: Awakening so consciousness (www.yoursto) Social Innovation (Engineering & innovation (Engineering & Course to Min Project, Capst Project, Capst Project, Camp Placements) Course Overvi Students' Self Introduction Activity 	cial ory.com on and Social ICS) i one us ew	•	ading assignments Read the handout of "The Process of Social Innovation" is Geoff Mulgan Design thinking for Social Innovation of Social Information about Akshaya Patra in class. (Background information about Akshaya patra and the Social Cuase it addressing) Brainstorming Session on Social Innovators in Class	ру	 Class activity on Behavioral Blocks to Innovation Discussion on the behavioural blocks. Introducing oneself with three Adjectives-Appreciating diversity and discovering self Group Formation Activity (Forming square) (Making four equilateral triangles out of popsicle sticks to enhance group cohesiveness amongst the group mates)
	Create Mindsets	Seven Mindsets: 1. Empathy (Example of The Ethe Puppies) 2. Optimism (Person Paralyzed down / Glass Half Half Empty) 3. Iteration (Thomas Alva Edis	l waist n full	<u>Re</u> •	ading assignments Handout on "Creat Mindsets"	е	 (How to train the Dragon? Common Video for all the mindsets) Watching in Class TED Talk on "How to build youir Creative Confidence by

	4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched)		David Kelley – IDEO Founder)
Process of Social Innovation	Engage Community study and Issue Identification	Reading assignments Handout on Community Study and Issue Identification Case Study on "EGramSeva" Case Study on "Janani Agri Serve" Class Presentations Initial observations being made by the group (Literature Survey of Places of Hubli- Dharwad) www.readwhere.co m Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge	 Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective templates with the help of sample case study

PEER REVIEW

2. Inspiration **Reading assignments** Familiarization of Plan for the Research Handout on the respective Overview of • Development of templates with Inspiration the help of Interview guide **Class Presentations** sample case Capture your • Entirety of the Social study Learnings Issue Identification of the Stake Holders (Examples on **Fluoroscent Curtain** and Students' **Punctuality for Class)** Interview Questions (Role Play on Interview with Stakeholders) Category wise Learnings capture Use template 2: Plan your Research Template 3. **Development of Interview Guide Template 4. Capture** your Learning 3. Ideation **Reading assignments** Familiarization of 3.1 Synthesis Handout on the respective Search for meaning Overview of Ideationtemplates with • Create "How might **Synthesis** the help of we" question **Class Presentations** sample case study Create insights "How might we" questions **Use template 5: Create** Insights **Template 6: Create** "How Might We' Questions

3.0 Ideation **Reading assignments Brain storming** 3.2 Prototyping Handout on Familiarization of Overview of Ideationthe respective • Generate Ideas **Prototyping** templates with **Class Presentations Select Promising** the help of Story boardsample case Ideas Determine what to demonstrating the study possible solutions prototype Activity on Risk Make your prototype **Use template 7: Select** management your best ideas Test and get feedback Activity on **Template 8 : Determine** Resource what to prototype management Structure building games **PEER REVIEW** 4.0 Implementation **Reading assignments** Familiarization of Create an action plan Handout on the respective Community Partners Overview of templates with (if any) Implementation the help of **Class Presentations** sample case Budgeting & **Fundraising** Pilot implementation study plan with required 1. Peer to Peer 2. Crowd Funding resources and Budget 3. Giving Kiosks indicating stake 4. Donation holders & their 5. Envelop Funding engagement 6. Marathons/ Walkathons 7. Conducting Yoga Classes (www.causevox.com / www.blog.fundly.com) Duration Ethical concerns Launch your solution Feedback (Impact)

	the students	 Handout on Overview of students Reflection 	the respective templates with the help of
learning by		Reflection	•
			the help of
		Use template 9:	sample case
		Reflection on the	study
		Process	
1 1		Class Presentations	
		Final Presentation- After	
		Implementation	

BACK

Program: Bachelor of Engineering			Semester - I			
Course Title: Engineering Physics lab			Course Code: 16EPHP101			
L-T-P: 0-0-1		Credits: 1	Contact Hrs.: 2hrs/Week			
ESA Marks: 80		ESA Marks: 20	Total Marks: 100			
Teaching Hrs:		Practical hrs: 28 hrs	Examination Duration: 3 Hrs.			
Experiments						
1.	Four probe method					
2.	V-I characteristics of p-n junction diode					
3.	Zener diode characteristics					
4.	Hysteresis loss					
5.	Transistor characteristics					
6.	Measurement of dielectric constant					
7.	Resonance frequency of LCR circuits					
8.	Study of frequency response of passive components					
9.	Calibration of thermocouple					
10.	Calibration of electrical meters					

BACK

II Semester

II SCIIICSICI								
Pro	gram: Bachelor of Engine	Semester - II						
Co	urse Title: Multivariable c	Course Code: 18EMAB102						
L-T-P: 4-1-0		Credits: 05	Contact Hours: 6 hrs/week					
ISA Marks: 50		ESA Marks: 50	Total Marks: 100					
Teaching Hours: 50 hrs		Tutorial: 28 hrs	Exam Duration: 3hrs.					
Unit-I								
	Partial differentiation Function of several variables, Partial derivatives, Level curves, Chain rule,							
1								
	Errors and Approximations. Extreme value problems. Lagrange's multipliers.							
	Double integrals							
2	Double integrals- Rectangular and polar coordinates, Change the order of integration. Change of variables, Jacobian. Application of double integrals							
_								
	Matlab: optimization problems, application of double integrals							
Unit-II								
	Triple integrals Triple integrals, Cartesian, change to Cylindrical and Spherical coordinates							
3								
	Application of Triple integrals							
	Calculus of Vector Fields Vector fields, Gradient and directional derivatives. Line and Surface integrals. Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem.							
4								
	Matlab: application of Triple integrals, Vector calculus problems							
Unit III								
	Differential equations of higher orders							
5	(a) Linear differential equations of second and higher order with constant							
	coefficients The method of Variation of parameters. Initial and boundary value							
	problems. (b) Applications of second order differential equations Newton's 2 nd law							
	(b) Applications of second order differential equations-Newton's 2 nd law,							
	electrical circuits, Simple Harmonic motion. Series solution of differential							
	equations. Validity of Series solution of Differential equations.							
Matlab: application of differential equations								
	Text Books: 1 Farly Transcendental Calculus, James Stewart, Thomson Books, 7ed, 2010.							
Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010								

Reference Books:

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

BACK

Prog	ram: Bachelor of Engineerin	ng	Semester - II			
Cour	se Title: Engineering Chem	istry	Course Code: 15ECHB	B102		
L-T-P	P: 3-0-0	0-0 Credits: 03 Contact Hours: 3hrs./w		week		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100			
Teac	Teaching Hours: 40 Exam Duration: 3hrs.		Exam Duration: 3hrs.			
		Unit-I				
	Chemical Bonding					
		factors influencing the for	mation of Ionic bond:			
	Ionization energy. Electro	n affinity & electro negati	vity and properties of			
	Ionic compounds. Covalen	t bond: Valence Bond theo	ry & Molecular Orbital			
1	theory – formation of hydi	rogen molecule, factors infl	uencing the formation	04 hrs		
	of covalent bond, polar	and non-polar covalent b	ond, dipole moment,			
	problems on calculation of	f percentage of Ionic chara	cter and properties of			
	covalent compounds, Co-o	ordinate bond: formation o	of hydronium ion and			
	ammonium ion.					
	Electrochemical Energy Sy	stems				
	·	nst equation, formation				
2	electrodes – Calomel electrode, Determination of electrode potential,					
	numerical problems on E, E _{cell} & E ⁰ _{cell} .					
	Batteries: Classification, Characteristics, Lead - acid, Lithium ion battery. Fuel					
	cells - Methonol-O ₂ fuel ce	ll.				
	Polymers		atta e talte e attale ta ca			
	, , ,	on; mechanism of polymeri	.			
,	·	tion of molecular weight of	• •	06 hrs		
3	problems. Commercial polymers - Plexi glass, PS, polyurethane.			UO III'S		
	Polymer composites: Carbon fiber and Epoxy resin – synthesis, properties and applications. Introduction to conducting polymers, mechanism of					
	conduction in poly acetyle		mers, meenamsm or			
	conduction in pory dectyres	Unit-II				
	Plating Techniques					
		cal importance. Electrop	lating, Principles of			
		ecting nature of electroder		04		
4	_	nrowing power, Electroplati		hrs		
	acid cyanide bath. Electro less plating, advantages of electro less plating over					
	electroplating. Electro le	ss plating of Cu and it	s application in the			
	manufacture of PCB.					
	Wafer Technology					
_	Introduction, physical and	d chemical properties of	silicon. Purification of	09 hrs		
5	silicon; chemical vapor deposition (CVD) process, zone refining process.			09 1113		
	Crystal growth; preparation	on of single crystal silicon b	y Czhochralski crystal			

	pulling technique – numerical problems. Crystal slicing and wafer preparation.				
	Fabrication process: thermal oxidation, diffusion, ion implantation –				
	numerical problems, epitaxial growth, masking and photolithography, wet				
	etching, dry etching.				
	Material Chemistry				
	Liquid Crystals – Types of liquid crystals, applications of Liquid Crystal in	03			
6	Display system.	hrs			
	Fluorescence and Phosphorescence – Jablonski diagram, Thermoelectric and	1113			
	Piezoelectric materials – meaning, properties and applications				
	Unit-III				
	Instrumental methods of measurement				
	Advantages over conventional methods. Electro analytical methods:				
7	Potentiometer - principle, methodology and applications. Optoanalytical	04 hrs			
	methods: Colorimeter - Principle, methodology and applications.	041113			
	Spectral methods of analysis: UV – Spectrophotometer - Instrumentation				
	and applications				
	Environmental Chemistry:				
	Water: Sources and ill effects of water pollutants – fluoride and nitrate;				
	determination of total hardness of water by EDTA method – numerical				
8	problems.	04 hrs			
	Sewage: Determination of Biological Oxygen Demand by Winkler's method –				
	numerical problems and determination of Chemical Oxygen Demand –				
	numerical problems.				

Text Books:

- 1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009, New Delhi.
- 2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat Rai Publications, 2006, New Delhi

Reference Books:

- 1. Text book of Inorganic Chemistry, P.L.Soni, Sultan Chand, 1999, New Delhi.
- 2. Hand book of batteries, David Linden, Thomas B Reddy, 3rd edition Mc Graw Hill publications, 2001, New York.
- 3. Polymer Science, 6th Edition, Gowariker V.R., Viswanathan N.V., Sreedhar J., New Age International (P) Ltd, 2007, New Delhi.
- 4. Solid State Devices& Technology, 4thEdition, V.Suresh Babu, sanguine Technical Publishers, 2005, Bangalore.
- 5. Material Science & Engineering: An Introduction, 9th Edition, Calister William D, John Wiley and sons, 2007, New York.
- 6. Instrumental methods of Chemical nalysis, 5th Edition, Gurudeep R Chatwal, Shan K Anand, Himalaya Publishing House Pvt. Ltd, 2010, Mumbai.
- 7. VLSI Technology, 2nd Edition, S.M.Sze, McGraw Hill Series in electrical and computer engineering, 1998, New York.

BACK

Prog	Program: Bachelor of Engineering Semester - II				
Cou	Course Title: Problem Solving with Data Structures Course Code: 18ECS			CSP102	
L-T-F	L-T-P: 0-0-3 Credits: 3 Contact: 6 Hrs./we			eek	
ISA I	Marks: 80	ESA Marks: 20	Total Marks: 100		
Teac	Teaching: Practical: 84 hrs Exam Duration: 3		Exam Duration: 3 H	irs.	
	Pointers, Structures and Files				
1	Recap of basics: Pointers ,Str	ructures; Self-referential s	tructures, dynamic	12 hrs	
	memory management Files – F	File manipulation program	S		
	Stacks and Recursion				
2	Stack: Definition, Operations, Stack ADT Implementation of stack operations.				
_	Applications of stack.				
	Recursion- Need for Recursion and problems on Recursion.				
	Queues				
3	Queue: Definitions of Linear, Circular queues, Queue ADT Linear and circular				
	queue operations Definition and working of Priority queue, Double ended				
	queue; Applications of queues.				
	Lists				
4	Concept of lists and dynamic memory management lists, definitions and				
-	representations: singly, doubly, circular lists. Dynamic Implementation of lists				
	and its operations, Applications of linked lists				
	Binary trees				
5	Binary Tree: Definition, Terminology and representation, Tree Traversals both			16 hrs	
	recursive and iterative. Binary	Search Tree and its applica	ntions.		

Text Books

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- 3. Data Structures Through C -- Yashavant P Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

BACK

Program: Bachelor of Engineering Semester - II			Semester - II	
Course Title: Engineering Exploration		Course Code: 15ECRP101		
L-T-P	: 0-0-3	Credits: 3	Contact Hrs.: 6hrs/week	
ISA N	ISA Marks: 80 ESA Marks: 20 Total Marks: 100		Total Marks: 100	
Teaching Hrs:		Practical hrs: 84 hrs.	ESA Exam Duration: 3 hrs.	
No	No Content		Session	ns

No	Content	Sessions	
1	Introduction to Engineering and Engineering Study	1	
2	Role of Analysis in Engineering, Analysis Methodology	2	
3	Data Analysis Graphing	2	
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering		
-	Design	5	
5	Project Management	1	
6	Sustainability in Engineering	2	
7	Ethics	1	
8	Modeling, Simulation and Data Acquisition using Software Tool	1	
9	Platform based development : Arduino	3	
9	Course Project	3	

Reference Books:

- 1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter No	No	Weightage in
	Name	percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10
5	Basics of Engineering Design	
]	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using	
9	Software Tool	-
10	Platform Based Development: Arduino	-
10	Course Project	40

BACK

Program: Bachelo	or of Engineering	Semester - II		
Course Title: Basi		Course Code: 18EECF1	<u> </u>	
L-T-P: 4-0-0	Credits: 4			
ISA Marks: 50	ESA Marks: 50	Contact Hours: 4 Hrs/we		
			. 2 Urc	
Teaching Hours: 5		Examination Duration	. э піз.	
Chantas 1. Trand	Unit-I Chapter 1: Trends in Electronic Industries: Introduction, Roadmap of electronic			
-		·		
sector, scope and opportunities in various segments of electronics (i.e., Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles),				
		•	03 hrs	
	d private sectors, Growth profile of	Electronic industries,		
	lilSAs, Electronic System Components.	an Diada, DN investiga		
-	Components, Devices and Application	•		
•	odeling as a circuit element, ideal and p			
	vave and full wave rectifier (centre tap	<i>5 ,,</i> .	10 hrs	
	alysis, numerical examples. Zener diod			
_	e and voltage regulator). Realization of	simple logic gates like		
AND and OR gate				
-	sistor: BJT, transistor voltages and cur			
•	ctor base bias, Voltage divider bias, CE o	,	07 hrs	
line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic				
(DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two				
Stage RC-coupled Amplifier).				
	Unit-II			
'	tal Logic: Number systems: Decima	•		
	nber systems, Conversions, Binary Op			
	nary number systems. Logic gates: Rea			
	pasic gates (AND, OR, NOT), Realization		14 hrs	
1 '	Boolean algebra: Theorems and po	•		
	plification of logical expressions, Kar	• • •		
	o Minimize Boolean Expressions (2 Varia			
	n of Half Adder and Full Adder, Parallel <i>F</i>			
•	ational Amplifier: OPAMP characteristic			
	near applications: Inverting amplifier, N	• , .	06 hrs	
	, Integration, Differentiation, Adder,	Subtractor, ZCD and		
Comparator.				
Unit-III				
-	munication Systems: Basic block diagr			
1	modulation. Amplitude modulation: Tim	•	07 hrs	
1 ' '	in description. Generation of AM wave:	•		
Detection of AM	waves: envelope detector. Double side b	and suppressed carrier		

modulation (DSBSC), Generation of DSBSC wave : balanced modulator, Super	
heterodyne principle.	
Chapter 7: Linear Power Supply, UPS & CRO: Working principle of linear power	
supply, UPS and CRO. Measurement of amplitude, frequency and phase of a	03 hrs
given signal.	

Text Book:

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References:

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design , 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. BoylesteadNashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

BACK

Program:	Program: Bachelor of Engineering			Semester - II	
Course Tit	le: Basic Mechani	cal Engineering		Course code: 15EMEF101	
L-T-P: 2-1-	0	Credits: 3		Contact Hrs: 4 hrs/week	
ISA Marks	A Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching H	irs.: 30 hrs	Tutorial: 28 hrs.		Exam Duration: 3 hrs	s.
Chapter	Cor	ntents	Hours	Tutorial	Sessions
		UNIT	l		
	Introduction	to Mechanical		Visit to Workshop	
	Engineering:			and Machine Shop,	
	Definition c	of engineering,		Tools, Safety	
1	Mechanical Eng	ineering, Branches	2	Precautions	1
_	of Mechanical	Engineering, Who	_	Video	_
	are Mechani	ical Engineers?,		presentations	
	Mechanical En	gineers' top ten			
	achievements.				
	Manufacturing I	Engineering: Basics		Demonstration on	
	of Manufacturing What is manufacturing, The main			working of Lathe,	
				milling, drilling,	
	manufacturing	sectors, The		grinding machines	
	importance of the main manufacturing sectors to the Indian			Demonstration on	
				Welding (Electric	
2	economy, Scales	of production	8	Arc Welding, Gas	5
	Classification	of manufacturing		Welding, Soldering)	
	Processes.			Demonstration and	
	Advances in M	anufacturing: CNC		Exercises on Sheet	
	machines, M	echatronics and		metal work.	
	applications			Visit to Learning	
				Factory	
		UNIT I	l		1
		neering: Power		Design Problems	
	Transmission Ele	ements		like <u>a moving</u>	
	Overview			<u>experience</u> ,	
	Design Application			aluminium can	
	·	pes, Length of Belt.		crusher	
3	1	o, Initial Tension.	6	Video	5
		Tensions. Power		presentations	
	Transmitted,	Numerical			
	Problems.				
	·	Gear, Rack and			
		Gear, Bevel Gear,			
	Helical Gears.	Speed, Torque, and			

	Power in Gear pair. Simple and			
	Compound Gear trains.			
	Numerical Problems.			
	Ball and Roller Bearings, Types,			
	Applications.			
	Thermal Engineering 1: Prime		Case study on	1
	Movers.		power requirement	
	Internal Combustion Engines:		of a bike, car or any	
	Classification, IC engine parts, 2		machine	
	stroke SI and CI engine, 4 Stroke SI		Video	
4	and CI Engine, PV diagrams of Otto	4	presentations	
	and Diesel cycles, Comparison of 2			
	stroke and 4 stroke engine,			
	comparison of CI and SI engine,			
	Problems on Engine Performance,			
	Future trends in IC engines.			
	UNIT III			
	Thermal Engineering 2: Thermal		Case study on	1
	Systems' Applications		selection of various	
	Refrigeration system, Air		thermal systems	
5	conditioning system, Pumps,	5	Video	
	Blowers and Compressors,		presentations	
	Turbines, and their working			
	principle and specifications.			
Taut Daal				

Text Books:

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,—Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology Vol I & II, 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

BACK

Program: Bachelor of Engineering Semester - II			
Course Title: Professional Communication Course Code: 15EHSH10		 101	
L-T-P: 1-1-0	Credits: 2	Contact Hrs.: 3 hrs./wee	:k
ESA Marks: 50	ISA Marks: 50	Total Marks: 100	
Teaching Hrs.: 20 hrs.	Tutorial: 28 hrs.	Exam Duration: 3 hrs.	
	Content		Hrs.
Chapter No. 1. Basics- English Communication Course Introduction, Explanation of template mix-ups with correct usages & necessity of grammar in error detection, Usage of tenses			9 hrs
Chapter No. 2. Vocabulary and grammar Vocabulary, Word Formation and Active and Passive Voice			6 hrs
Chapter No. 3. Bouncing Practice Definition and types of bouncing and its practice with examples, reading skills, free style speech. Individual presentation.			
Chapter No. 4. Rephrasing and Structures Comprehension and Rephrasing, PNQ Paradigm and Structural practice			
Chapter No. 5. Dialogues Introduction of dialogues, Situational Role plays,			
Chapter No. 6. Business Co Covering letter, formal let topic.	ommunication ters, Construction of paragrap	hs on any given general	9 hrs
D. C			

References:

- 1. Collins Cobuild Advanced Learner's English Dictionary
- 2. Raymond Murphy Intermediate English Grammar, Cambridge University Press
- 3. Martin Hewings- Advanced English Grammar, Cambridge University Press.

BACK

Semester-III

Program: Bachelor of Engineering Semester-III					
Cours	urse Title: Graph Theory and Linear Algebra		Course Code: 15EMAB204		
L-T-P	: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week		
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 50 hrs		Exam Duration: 3 hrs		
		Unit –I			
	Graph theory:	Definitions and examples	of graph, Subgraphs,		
1	Components, Graph Isomorphism, Vertex Degree, Euler Trails and				
*	Circuits, Planar Grap	hs, Hamilton Paths and Cyo	cles, Graph Colouring and	10 hrs	
	Chromatic Polynomi	als.			
	Trees: Definitions, P	roperties, examples, Roote	d trees and Binary rooted		
2	trees, preorder and	post order traversals, sorti	ng, spanning trees, prefix	10 hrs	
	codes and weighted	trees, Optimization and Ma	tching- Dijkstra's shortest	10 1113	
	path algorithm, Min	imum spanning trees, Krusl	kal and prim's algorithms.		
		Unit –II			
	Matrices and Syster	n of linear equations:			
	Introduction to syste	em of linear equations and	l its solutions, elementary		
	row operations-echelon form, Rank of a matrix. Consistency of system of				
3	linear equation, solution of system of equations by (i) Direct methods -				
	Gauss elimination, Gauss Jordon method (ii) Iterative methods- Guass-				
	Seidal method. Eigen values and Eigen vectors of a matrix. Largest Eigen				
	value and the corresponding Eigen vector by power method, Application				
	case study.				
	Vector space:				
	•	ub spaces- examples, Line	, 9		
4	sets, subspaces, Linear spans Row space of a matrix, Linear dependence			08 hrs	
	and linear independence. Basis and dimensions, application to matrices,				
	Rank of a matrix. Sums and direct sums, Coordinates, Application case				
	study.	Unit –III			
	Fourier Series:	Ollit -III			
		Fourier series representa	ations of four classes of		
	•	•			
	signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficients of Exponential Fourier Series and Examples.				
5	·			10 hrs	
		•			
	signa Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential				
	•	efficients, Time domain Co	<u>-</u> .		
		theorem and Examples on	•		
	, , , , , , ,				

Text Books

- 1. David C. Lay, "Linear Algebra and its Applications", 3rd Ed., Pearson Education, 2005.
- 2. Discrete Mathematics and its applications., Kenneth H Rosen, Mcgrawhill, 7ed, 2011
- 3. Discrete and Combinanatorial Mathematics by Ralph P.Grimaldi, Pearson Education, Asia, Fourth edition-2002.
- 4. Grewal B. S., "Higher Engineering Mathematics", 39th Ed., Tata McGRAW Hill, New Delhi, 2005.

Reference Books:

- 1. Seymour Lipschutz and Marc Lipson, "Linear Algebra", Schaums outline.
- 2. Theory and Problems of Combinatorics including concept of Graph Theory by V. K.Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995
- 3. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo, PHI publications (1986).

Scheme for End Semester Examination (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions	
	Marks Each	numbers		
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3	
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3	
III	Q.No7	5	Solve Any 1 out of 2	
	Q.No8	5	Solve Ally I out of Z	

BACK

Progra	am: Bachelor of Enginee	ering	Semester-III	
Cours	Course Title: Discrete Mathematical Structures Course Code:19ECSC20		Course Code:19ECSC202	
L-T-P:	L-T-P:3-1-0 Credits: 3 Contact Hrs: 5hrs/week		Contact Hrs: 5hrs/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40 hrs	Tutorial: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Logic and Proofs:	Propositional Logic, Prop	oositional Equivalences,	
1	Predicates and Quant	ifiers, Rules of Inference.	Introduction to Proofs,	8hrs
	Mathematical Inductio	n and Well-Ordering		
2	Functions and Relatio	ns: Types of sets, Function	s, Relations, Equivalence	8hrs
	relations partial orderi	ng (Poset), Hasse Diagram,	Counting	01113
		Unit –II		
	Recurrence Relations: Introduction, Applications of Recurrence Relations,			
3	Solving Recurrence Relations, Formulating Recurrence relations,			8
3	Generating Functions, Inclusion–Exclusion, Applications of Inclusion–			hrs
	Exclusion			
4	Groups: Binary Operat	ions, Semi groups, Product	s and Quotients of Semi	8
	Groups, Groups, Produ	ict and Quotients of Groups		hrs
		Unit –III		
	Cryptography: Crypto	graphy and Modular Arit	hmetic, Introduction to	
5	Cryptography, Private	e Key Cryptography, Pu	blic-key Cryptosystems.	4hrs
	Arithmetic modulo n, (Cryptography using multipli	cation mod n	
6	RSA Cryptosystem:	The RSA Cryptosystem;	RSA Encryption, RSA	4
	Decryption, RSA as a P	ublic Key System, Cryptogra	phic Protocols	hrs
Text Books:				

1. Rosen K.H., Discrete Mathematics and its Applications with Combinatorics and graph theory, 7th Ed, Tata Mc-GrawHill Publications, 2012

Reference Books:

- 1. Kolman, Busby and Ross, Discrete Mathematical Structures, 5Ed., PHI, 2004
- 2. Grimaldi R.P. and Ramana B.V, Discrete and Combinatorial Mathematics- An Applied Introduction, 5Ed., Pearson Education, 2007

Tutorial plan (tentative)

Tutorial No	Tutorial topics	No of slots 1 slot = 2hrs
1	Real time Applications and problems on Logic and Proofs: Propositional logic	01

2	Real time Applications and problems on Logic and Proofs:	01
	Predicate logic	
3	Real time Applications and problems on Functions	01
4	Real time Applications and problems on Relations and	01
4	Counting	
5	Real time Applications and problems on Homogeneous RR	01
6	Real time Applications and problems on Non-Homogeneous	01
	RR	
7	Applications and problems on Groups	01
8	Real time Applications and problems on private key	01
8	cryptography	
9	Real time Applications and problems on public key	01
	cryptography	
10	Real time Applications and problems on RSA algorithms	01

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally 1

BACK

Program: Bachelor of Engineering			Semester - III		
Cours	Course Title: Computer Organization and Architecture		Course Code:21ECSC201		
L-T-P:	L-T-P: 3-0-1 Credits: 4 Contact Hrs: 5hrs/wee		Contact Hrs: 5hrs/week	(
ISA M	larks: 50	ESA Marks: 50		Total Marks: 100	
Teach	ing Hrs: 40 hrs	Practical: 28 hr	rs.	Exam Duration: 3 hrs	
		Unit –	·I		
1	Basic Concepts and Cor	nputer Evolution	n, Performa	nce Issues, A Top-Level	5 hrs
_	View of Computer Func	tion and Interco	nnection		5 nrs
2	Memory, Input/Output,	Computer Arith	metic, Digit	al Logic	8 hrs
3	Instruction Sets: Characteristics and Functions, Addressing Modes and			7 hrs	
3	Formats			7 1113	
		Unit –	II		
4	Processor Structure and	Function, Redu	ced Instruc	tion Set Computers	10
_				hrs	
5	Instruction-Level Para	llelism and S	Superscalar	Processors, Parallel	10
3	Processing				hrs
		Unit –I	III		
6	Multicore Computers, General-Purpose Graphic Processing Units			5 hrs	
7	Control Unit Operation, Microprogrammed Control, Case studies and			5 hrs	
	Projects				3 1115
T	N 1 -				

Text Books:

1. William Stallings, Computer Organization and Architecture Designing for Performance, 10th Ed, Pearson Education, 2016.

Reference Books:

- 1. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5th Edition, Elsevier publication, 2017.
- 2. Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata McGraw Hill 2008

Tentative list of experiments

Week No	Lab Assignments
1	Logisim Tool Demo
2	Combinational Circuits (Half Adder, Full Adder, Decoder, Multiplexer)
3	Combinational Circuits (Hall Addel, Full Addel, Decodel, Multiplexel)
4	Building ALU
5	1-bit RAM Cell and building bigger RAM
6	Cache Memory
7	[Cache Simulator + Time Analysis]
8	Instruction Format & Decoding,

	Control Signal Generation	
9	Data Bath Docign for Given Set of Instructions	
10	Data Path Design for Given Set of Instructions	
11	MIPS 5-Stage Pipeline: Simulates the pipeline.	
12	Loop unrolling: A software technique for exploiting instruction-level	
13	parallelism.	
14	Technical Paper reading, summarizing /	
14	Paper Presenting	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5	4,5	Solve Any 2
III	Q.No6	6	Solve Any 1
'''	Q.No7	7	Solve Ally 1

BACK

Progra	am: Bachelor of Engineer	ing	Semester - III	
Cours	e Title: Data Structures a	nd Algorithms	Course Code: 20ECSC205	
L-T-P:	4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50 hrs		Exam Duration: 3hrs	
	Unit –I			
	Fundamentals of Algori	thms and Problem Solvin	g	
1	Space and Time Complexities, Order of an algorithm, Efficiency Analysis of			8 hrs
_	Stacks and Queues Rev	visited, Recursive Definiti	ons, Recursive Functions,	0 1113
	Towers of Hanoi, Backtr	acking, Recursion Vs. Itera	ation	
	Hashing and Hash table	es		
2	Direct Address Table,	Hash Table, Hash Functi	ons, Collision Resolution	4 hrs
	Techniques.			
	Graphs and Trees			
3	Graphs, Computer Representation of Graphs, Trees, Tree Traversals, AVL			8 hrs
	Trees, 2-3 Trees, Application of Binary Trees, Tries, DFS, BFS			
	ı	Unit –II		Т
	Sorting Techniques			
4	Sorting, Bubble sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,			8 hrs
	Heap Sort.			
_	Substring Search Algorithms			
5	Brute-force method,	,	hm, Knuth-Morris-Pratt	4 hrs
	Algorithm, Rabin-Karp A	Aigorithm		
	Graph Algorithms Union-Find Data Structure, Shortest Path algorithms, Minimum Spanning		0 6	
6		ure, Shortest Path algorit	nins, wiinimum spanning	8 hrs
	Tree Algorithms	Unit –III		
	Problem Case Studies	Onit -III		
7	Problem Case Studies Travelling Sales Person Broblem Knansack Broblem Fake Cein Broblem			5hrs
'	Travelling Sales Person Problem, Knapsack Problem, Fake Coin Problem, Strassen's Matrix Multiplication, Huffman Coding			Jiii 3
	Limitation of Algorithm			
8	Undecidability, P and NP Classes, P vs NP, NP-Hard, NP-Complete			5 hrs
Text B				

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.
- 2. HackerRank / CodeChef / SPOJ

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
111	Q.No7	7	Solvo Any 1
III	Q.No8	8	Solve Any 1

BACK

Progr	am: Bachelor of Enginee	ring	Semester - III	
Cours	Course Title: Database Management System Course Code:15ECSC		208	
L-T-P:	4-0-0	Credits: 4	Contact Hrs: 4 hrs/w	eek
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50 hrs		Exam Duration: 3 hrs	5
		Unit –I		
1	Schema Architecture; Data Models for Data Entity Types, Entity S Relationship Sets. Role Refining the ER Design Issues.	; Data Models, Schemas ar Database Languages; Using H base Design; An Example D Sets, Attributes and Keys, s and Structural Constraints; n; ER Diagrams, Naming Con	igh-Level Conceptual atabase Application; Relationship Types, Weak Entity Types;	06 hrs
2	Relational Data Model and Relational Algebra Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Binary Relational Operations: CARTESIAN PRODUCT, JOIN: Additional Relational Operations; Relational Database Design Using ER- to-Relational Mapping.			08 hrs
3	SQL SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; JOIN operations, Complex SQL Queries.		06 hrs	
		Unit –II		
4	9	idelines for Relation So Forms Based on Primary Keys	chemas; Functional ; Boyce-Codd Normal	07 hrs
5	Introduction to Transaction Processing Introduction to Transaction Processing; Transactions and System concepts; Desirable Properties of Transactions; Characterizing Schedules Based on- Recoverability, Serializibilty.			07 hrs
6	-	echniques se Locking Techniques for C and Starvation, Concurrency c	-	06 hrs

	Unit –III	
	Database Security	
_	Introduction to DB Security Issues, Discretionary Access Control,	
/	Mandatory Access Control And Role-Based Access Control, SQL	05 hrs
	Injections, SQL Attacks;	
	Introduction to NOSQL and Columnar database:	
	Introduction; Difference between SQL and NoSQL; Scaling of	
8	Databases; Applications; Columnar Database: Introduction; Row-	05 hrs
	oriented Systems; Column-oriented systems; Benefits; An Example of	
	Columnar Database;	

Text Books:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011.
- 2. ShashankTiwari , Professional NOSQL, 1st Ed, Wrox, 2011.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Ed, McGraw Hill, 2007.
- 2. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	Numbers	
ı	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
'''	Q.No8	8	Solve Ally 1

BACK

Course Title: Data Structure and Algorithms Lab		Course Code: 19ECSP201
L-T-P: 0-0-2 Credits: 2		Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Practical Hrs: 56 hrs.	Exam Duration: 3 hrs

Tentative plan of lab Implementation

Week No	Lab Assignments	
1		
2	03 Programming Assignments on Stacks, Queues, Lists, Files	
3		
4	01 Assignment on Fundamentals of Algorithms	
5	01 Assignment on Trees	
6	02 Assignments on Graphs	
7	oz Assigninents on Graphs	
8	01 Assignment on Sorting	
9	01 Assignment on Searching	
10	01 Assignment on Sorting and Searching Applications	
11		
12	03 Assignments on Graph algorithms	
13		
14	Open Ended Experiment	

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.
- 2. HackerRank / CodeChef / SPOJ

BACK

Program: Bachelor of Engineer	Semester- III	
Course Title: Database Applications Lab		Course Code: 15ECSP204
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks:20	Total Marks: 100
Teaching Hrs:	Practical Hrs: 42 hrs.	Exam Duration: 3 hrs

List of experiments/jobs planned to meet the requirements of the course.

 Introduction to RDBMS/Case study/ basic SQL commands.
 Set theory, logical operators and aggregate functions.
 Group by, Having clause, Views and index
 Basics of PL/SQL.
 SQL queries on set theory, logical operators and join operations.
 SQL queries queries on aggregate functions, group by and
having clause.
 SQL queries on Views and nested query operations.
 PL/SQL queries using triggers and cursors.
 PL/SQL queries using procedures and functions.
Database Design
 Database design & implementation

Text Book:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 7th edition, Pearson Education, 2012.
- 2. Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition , O'Reilly Media, 2014.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 2. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Students Assessment through ISA (80%) + ESA (20%)

Internal Semester	Assessment	Weightage in Marks
Assessment (80%)	Exercises	50
	Structured Enquiry	20
	Open Ended	10
	Experiment	10
End Semester Assessment (20%)	ESA	20
Total	100	

BACK

Prog	ram: Bachelor of Engi	neering	Semester - III		
Cou	rse Title: Graph Theory and Calculus Course Code: 15EMAB		3233		
L-T-F	P: 4-0-0	Credits: 04	Contact Hours: 4hrs/v	veek	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 50		Exam Duration: 3hrs		
		Unit I			
	Graph theory:				
1	Definitions and exa	mples of graph, Subgraphs,	Components, Graph	10 hrs	
-	Isomorphism, Vertex	Degree, Euler Trails and Cir	cuits, Planar Graphs,		
	Hamilton Paths and Cy	ycles, Graph Colouring and Chro	matic Polynomials.		
	Trees:				
	Definitions, Propertie	s, examples, Rooted trees and	Binary rooted trees,		
2	preorder and post ord	er traversals, sorting, spanning	trees, prefix codes and	10 hrs	
	weighted trees, Opt	imization and Matching- Dij	kstra's shortest path		
	algorithm, Minimum s	spanning trees, Kruskal and prin	n's algorithms	<u> </u>	
		Unit II			
	Differential Calculus				
3	Differentiation of standard functions of first and higher orders, Taylor's and				
	Maclaurin's series expansion of simple functions for single variable.				
	Partial differentiation			06 hrs	
4	Function of several v	variables, Partial derivatives, C	hain rule, Errors and		
	approximations				
	Integral Calculus				
5	_	ls, properties, Beta and Gamr		09 hrs	
		mma functions Approximate in	•		
	rule, Simpson's 1/3 ru	le , Multiple integrals, simple p	roblems.	L	
	Unit III				
	Differential equations				
	Introduction, order and degree of equation, Solution of first order first-				
_	degree differential equations –variable separable methods, Linear				
6	differential equations, Bernoulli's equations, Initial value problems,				
	•	thod for initial value problem			
	•	ations of second and higher	orders with constant		
coefficients.					
Text Books 1. Discrete Methometics and its applications. Kenneth H. Boson, Megrawhill 7ad					

- 1. Discrete Mathematics and its applications., Kenneth H Rosen, Mcgrawhill,7ed,2011
- 2. Discrete and Combinanatorial Mathematics by Ralph P.Grimaldi, Pearson Education, Asia, Fourth edition-2002.

- 3. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001
- 4. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi, 2003

Reference Books:

- 1. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 2. Theory and Problems of Combinatorics including concept of Graph Theory by V. K.Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995
- 3. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo, PHI publications (1986).

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4, 5	Solve Any 2 out of 3
111	Q.No7, Q.No-8	6	Solve Any 1 out of 2

BACK

IV Semester

mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	Pro	gram: Bachelor of Eng	ineering	Semester - IV		
ISA Marks: 50	Cou	Course Title: Applied Statistics with R Course Code: 20EMAB20			9	
Teaching Hrs:40 hrs	L-T	L-T-P: 3-1-0 Credits: 4 Contact Hrs: 6 hrs/week				
Unit-I Chapter 1: Description of data Introduction: Data, Type of Variables, mean, weighted mean, median, mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Chapter 1: Description of data Introduction: Data, Type of Variables, mean, weighted mean, median, mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	Tea	ching Hrs:40 hrs	Tutorial Hrs: 28 hrs	Exam Duration: 3 hrs		
Introduction: Data, Type of Variables, mean, weighted mean, median, mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.			Unit-I			
mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Chapter 1: Description	n of data			
mode, Quartiles, Variance, Coefficient of variation, skewness, Histogram, Box plots, Normal Quantitle, Qunatile plots Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Introduction: Data, T	ype of Variables, mean, v	veighted mean, median,		
Chapter 2: Probability Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	1	mode, Quartiles, Varia	ance, Coefficient of variation	on, skewness, Histogram,	8 hrs	
Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.						
multiplication rule, Baye's rule, Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Chapter 2: Probability	· '			
Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Introduction: Definitio	on, Interpretation of probab	ility value, addition rule,		
Decision Tree Induction, Bayesian Classification. R-tutorial: Introduction to Data handling, Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		multiplication rule, Ba	ye's rule, Applications: Data	Classification Methods -		
Histogram, Skewness, Boxplot, QQ-norm, Decision tree Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	2	Decision Tree Inductio	n, Bayesian Classification.		6 hrs	
Unit-II Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		R-tutorial: Introduction	on to Data handling, Descri	ption of data graphically,		
Chapter 3: Random variables and Probability Distribution Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Histogram, Skewness,	Boxplot, QQ-norm, Decision	tree		
Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.			Unit-II			
Random variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Chapter 3: Random v	ariables and Probability Dis	stribution		
variables; Introduction to bivariate distribution, joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		-	<u>-</u>			
distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal. Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	3				8 hrs	
Chapter 4: Statistical Inference I Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		·				
Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Binomial, Poisson, Nor	mal.			
Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, 4 Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Chapter 4: Statistical	Inference I		8 hrs	
Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		·				
Sample size determination, Hypothesis test for proportions, means(single and differences), using P-value approach R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.						
R-tutorial: Probability distribution, Testing of Hypothesis for proportions, means(single and differences) Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	4					
The state of the s		and differences), using P-value approach				
Unit-III Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		R-tutorial : Probability distribution, Testing of Hypothesis for proportions,				
Chapter 5: Correlation and Regression Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.		means(single and diffe	erences)		8 hrs	
Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear regression, Logistic Regression.	Unit-III					
regression (ANOVA approach), Multiple linear regression, Logistic Regression.		Chapter 5: Correlation	and Regression			
regression (ANOVA approach), Multiple linear regression, Logistic Regression.	5					
	3	regression (ANOVA	approach), Multiple line	ear regression, Logistic	5 hrs	
Chanter6: Statistical Inference II		Regression.				
Chaptero. Statistical inference ii		Chapter6: Statistical In	nference II		5 hrs	
6 Test for independence of attributes (m x n contingency table) Inference	6					
based on choice of suitable test procedure(Goodness of fit)		based on choice of suitable test procedure(Goodness of fit)				

R-tutorial: Linear Regression with ANOVA approach, Multiple Regression with ANOVA approach

Text Books

- 1. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.
- 2. Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, 1ed, PHI, 2000.

Reference Books:

- 1. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
- 2. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 3. Sheldon M.Ross ,Introduction to Probability and Statistics for Engineers and Scientists

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7	6	Solve Any 1 out of 2
111	Q.No8	7	Solve Ally 1 Out of 2

BACK

Program: Ba	achelor of Engineer	ing	Semester - IV	
Course Title	Course Title: Microcontroller Programming and Interfacing Course Code: 21EC			SC206
L-T-P: 1-0-3 Credits: 4 Contact Hrs: 7hrs/			week	
ISA Marks: 100 ESA Marks: 0 Total Marks: 100				
Teaching Hr	Teaching Hrs:20 hrs Practical hrs: 84 hrs Exam Duration: 3		Exam Duration: 3 h	rs
		Module I		
Lecture /Reading	Introduction to Microcontroller and Embedded System Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.			1 hrs
Hands on	 Introduction t working of the 	o the hardware, setup, familia hardware	arizations with the	3 hrs
Lecture /Reading	AVR Architecture and Assembly Language Programming on AVR Microcontrollers Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.		2 hrs	
Hand on	Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set HLL Python programming on the hardware		9 hrs	
Review Review I			3 hrs	
Module -II				Γ
Lecture /Reading	Delay Calculation of AVR. AVR Multistage execution Pipeline.			1 hrs
Hands on	1 1			6 hrs
Lecture /Reading	AVR I/O Port Prog	ramming		1 hrs

	I/O Port Directored their functions. Date of DDD/DDDy Docistors in	
	I/O Port Pins and their functions, Role of DDR/DDRx Registers in	
	Input and output operations, Programming for I/O Ports,I/O Bit	
	Manipulations,	
Hands on	I/O Port programming	6 hrs
Review	Review II	3 hrs
	Module -III	
	Interrupts in AVR and Interrupt Programming	
	AVR Interrupts, Interrupts vs Polling, Interrupt Service Routine, Steps	
Lecture	in executing an interrupt, Sources of Interrupts, Interrupt Priority,	1 hrs
/Reading	Concept of Context Saving in task switching, Enabling and Disabling	1
	Interrupts, Programming Timer Interrupts, Programming external	
	interrupts,	
Hands on	Interrupt Programming	6 hrs
	AVR Serial Port Programming	
Lecture	Basics of Serial Communication, RS232 standards, RS232 Pins, RS232	
/Reading	Handshaking Signals, ATMEGA32 connections to RS232, Baud Rate	1 hrs
	and UBRR Register, UDR register and USART, UCSR Registers and	
	USART Configuration, Programming AVR for Serial Communication.	C loss
Hands on	Serial Communication programming	6 hrs
Review	Review III	3 hrs
	Module -IV	1
Lecture	LCD and Keyboard Interfacing	
/Reading	LCD Interfacing, Sending Commands and Data to LCD (4 Bits and/or 8	1 hrs
,	Bits at a time). Links:	_
Hands on	Keyboard Interfacing, Matrix Keyboard connection to AVR Ports, Key	6 hrs
	Identification,	_
Lecture	Chapter No. 8. ADC, DAC and Sensor Interfacing	1 hrs
/Reading	Need for ADC and DAC in Interfacing, ADC Characteristics, ADC	
	devices, and ATmega32 ADC features, Programming A/D Converter	
Hands on	DAC Interfacing, Sensor Interfacing	6 hrs
Review	Review IV	
	Module –V	
Hands on	Integration of the work done in various modules according to the	9 hrs
	problem statement	
Final	Presentation + Project exhibition	3 hrs
Evaluation		
Text Books:		
1.Mazidi M	. A, NaimiSarmad, NaimiSepehr, ""The AVR Microcontroller and Emb	edded
	g Assembly and C", Prentice Hall.	
Reference B	<u> </u>	

BACK

FMCD2009 / 2.0 65

J. M. Hughes, "Arduino A Technical Reference", O'Reilly

Progr	am: Bachelor of Engineer	ing	Semester - IV	
Cours	Course Title: Object Oriented Programming Course Code: 20ECSC2		204	
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/wee			ek
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 40 hrs Exam Duration: 3hrs				
		Unit –I		
	Introduction: Introdu	iction to object orie	ented programming.	
1	Characteristics of object	t oriented languages, Progra	amming Basics, arrays,	4 hrs
	Functions in C++ (param	eter passing techniques.)		
	Classes and Objects: In	troduction to Classes and (Objects, encapsulation	
2	visibility modifiers, cons	tructor and its types, neste	ed classes, String class.	6 hrs
	UML diagrams to descri	be classes and relationships	•	
3	Inheritance: Introduction, types of Inheritance, constructors, Abstract		6 hrs	
	class, Aggregation: classes within classes			0 1113
		Unit –II		
4	Virtual Functions and Polymorphism: Virtual functions, Friend functions,			6 hrs
•	static functions, The 'this' pointer			0 1113
	Templates and Except	tion Handling: Function	and class templates.	
5	Introduction to exceptions, Throwing an Exception, Try Block, Exception			6hrs
	_	Exception), Multiple except	tions. Exceptions with	
	arguments			
6	6 Design Patterns: Creational, Structural and Behavioural design patterns.			4 hrs
Unit –III				
7	Streams and Files: Stre	am classes, File I/O with str	eams.	4 hrs
8	Standard Template Libra	ary: container classes: Sequ	ence and Associative	4 hrs
•	Containers			4 1115
Toyth	nooks			•

Textbooks

1. Robert Lafore, Object oriented programming in C++, 4^{th} Ed, Pearson education, 2001

Reference Books

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	45&6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
'''	Q.No8	8	Joine Ally I out of Z

Progra	am: Bachelor of Eng	ineering	Semester- IV	
Course Title: Principles of Compiler Design		Course Code:19ECSC203		
L-T-P:	L-T-P:3-1-0 Credits: 3 Contact Hrs: 05 hrs/v		Contact Hrs: 05 hrs/week	
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	Teaching Hrs: 40 hrs. Tutorial: 28 hrs. Exam Duration: 03 hrs			
		Unit –I		
	Introduction to compilers:			
	Brief History Of Compilers, Translation Process, Major Data Structures I			
1	Compilers, Choms	sky Hierarchy, Lexical Analy	sis: Scanning Process,	06hrs
	Regular Expression	ns For Tokens, Lexical Errors, A	Applications Of Regular	
	Expressions.			
	Finite Automata:			
	Introduction: Lan	guage, Automata, From Re	egular Expressions To	
2	Deterministic Finite	e Automata (DFA): E-Nondeteri	ministic Finite Automata	06hrs
	(E-NFA), NFA, DFA, DFA Optimization, Finite Automata As Recognizer,			
	Implementation Of	f Finite Automata		
	Introduction to Sy	ntax Analysis:		
3	Introduction To Grammars, Context-Free Grammars (Cfgs), Ambiguity In			04hrs
	Grammars And Languages, Role Of Parsing.			
	1	Unit –II		
	Top Down Parsing	:		
4	Introduction, Left Recursion, Left Factoring, LL (1) Parsing, FIRST And			08hrs
	FOLLOW Sets, Error Recovery In Top Down Parsing.			
	Bottom up Parsing			
5	Introduction, SLR (1) Parsing, General LR (1) And LALR (1) Parsing, Error			08hrs
	Recovery In Botton			
Unit –III				
	Semantic Analysis:			
6	Attributes And Attributes Grammars, Algorithm For Attribute			04hrs
	+	bol Table, Data Types And Data	Checking.	
	Intermediate Code			
7	Intermediate Code And Data Structure For Code Generation, Code		04hrs	
	Generation Of Data Structure References, Code Generation Of Control			
	Statements.			

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2011.
- 2. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer using LEX and YACC tools.	02
7	Design of CFG for validating Natural languages and implement the same.	02

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	Numbers	
[Q.No1, Q.No2, Q.No3	1, 2 ,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
III	Q.No7	6	Solve Any 1
111	Q.No8	7	JOINE Ally I

BACK

ISA Marks: 50 Teaching Hrs: 50 hrs Practical: 28 hrs Unit –I Introduction Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIs and characteristics. Process Management Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit –II Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX, Kernel Support for Files, Directory Files, Hard and symbolic filenames, +04 General File APIs. File and Record Locking. Memory Management Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program	Pro	Program: Bachelor of Engineering Semester - I			
ISA Marks: 50 Teaching Hrs: 50 hrs Practical: 28 hrs Unit –I Introduction Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIS and characteristics. Process Management Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit –II Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX, General File APIs. File and Record Locking. Memory Management Memory Management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Case study RT Linux: Features, architecture, components, application program 5	Course Title: Operating Systems Principles and Programming			Course Code	::18ECSC202
Introduction	L-T-P: 4-0-1 Credits: 5		Contact Hrs: 6 hrs/we		
Introduction Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIs and characteristics. Process Management Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit -II Deadlocks Deadlocks System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX & General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit -III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program 5.5	ISA	Marks: 50	ESA Marks: 50	Total Marks:	: 100
Introduction Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIs and characteristics. Process Management Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit -II Deadlocks Deadlocks System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, +04 General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit -III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program 5	Tea	ching Hrs: 50 hrs	Practical: 28 hrs	Exam Durati	on: 3 Hrs
Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIs and characteristics. Process Management Process Concept, Process scheduling, Process Control, Process 2 Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit –II Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, 4-04 General File APIs. File and Record Locking. Memory Management Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program 5 Stationary System, UNIX utility commands, UNIX application program in the process contents, and the process contents, and the proces			Unit –I		
Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms Process Synchronization Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit –II Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking. Memory Management Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program 5	1	Introduction to Operating Overview of UNIX Operation	• • • • • •	•	
Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization. Unit -II	2	Process Concept, Proce Accounting, Inter-process Thread API, Thread libi	communication, Multithreading rary, Process scheduling: Bas	g models and	+
Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program	Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex,				
Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock File management UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program			Unit –II		Γ
UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program	Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance,				
Kernel Support for Files, Directory Files, Hard and symbolic filenames, + 04 General File APIs. File and Record Locking. Memory Management Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program		File management			
Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation. Unit –III Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program	5	Kernel Support for Files, Directory Files, Hard and symbolic filenames			
Virtual Memory Management Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program	6	6 Memory management strategies, Background, Swapping, Contiguous			07 hrs
7 Virtual Memory Management, Background, Demand paging, Page replacement. Case study RT Linux: Features, architecture, components, application program		Unit –III			
8 RT Linux: Features, architecture, components, application program 5	7	Virtual Memory Manage		paging, Page	5 hrs
princerrace, scrieduming and till caus.	8	-		tion program	5 hrs

Text Books:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 9 ed., Wiley-India, 2019.
- 2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2018

Reference Books:

- 1. William Stallings, "Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

List of Experiments

Expt. No.	Experiments	No. of Slots
1	Process control (Using fork, wait, exec, exit API's)	2
2	Inter Process Communication using Pipes, FIFO's	2
3	Concurrent operations using Threads	2
4	File/ record locking and unlocking using fcntl	1
5	Simulation of CPU scheduling algorithms	1
6	Deadlock avoidance(Banker's algorithm), Deadlock	2
	detection	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
111	Q.No8	8	Solve Ally 1

BACK

Program: Bachelor of Engineering		Semester - IV	
Course Title: Exploratory Data Analysis		Course Code: 21ECSC210	
L-T-P: 2-0-2 Credits: 4		Contact Hrs: 6 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30 hrs	Practical hrs: 56 hrs	Exam Duration: 3 hrs	

	Unit –I			
	Introduction and scientific python: Ecosystem for data science, basic			
1	python, numerical and vectorized computation, data manipulation, data	10 hrs		
	visualization.			
	Exploratory Data Analysis: Types of data: categorical, numerical,			
2	probability distributions , Descriptive statistics, univariate and multivariate	10 hrs		
	statistics, advanced data visualization, Case study			
	Unit –II			
	Data Pre-Preprocessing			
3	Data cleaning, data integration, dimensionality reduction: feature selection	10 hrs		
	and feature extraction, data transformation			
4	Supervised Learning	10 hrs		
_	Linear and logistic regression, naïve Bayes classifier, K-nearest neighbours	10 1113		
5	Clustering	10 hrs		
٠	Partitioning-based, hierarchical clustering, density-based clustering	10 1113		
Unit –III				
6	Time-series analysis : Autocorrelation, time-series forecasting, auto	10 hrs		
J	regressive moving average models.	10 1113		

Reference Books:

- 1. Wes McKinne, Python for Data Analysis, Published by O'Reilly Media, 2nd Edition, October 2017.
- 2. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, 2012
- 3. Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I		1, 2	Demonstratio
П	Lab Exam on Course Project	3,4,5	n of Course
Ш		6	Project

BACK

Program: Bachelor of Engineering		Semester - IV
Course Title: Object Oriented Programming Lab		Course Code: 20ECSP203
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3hrs

Experiments Number	Lab assignments/experiment	Number of Slots
1	Demonstration: Introduction to Code Blocks IDE (Integrated Development Environment), C++ programming basics.	4
2	Exercise: Classes and objects, Inheritance, Polymorphism, Templates and Exceptions Handling	4
3	Structured Enquiry: Classes and objects, Inheritance, Polymorphism, Templates and Exceptions Handling	4
4	Open Ended: Data types, Classes and Objects, Inheritance polymorphism, Exception Handling. Design patterns	2

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEd, Pearson education, 2001

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Evaluation:Students Assessment through ISA (80%) + ESA (20%)

Continuous Internal Evaluation (80%)	Assessment	Weightage in Marks
	Exercises	40
	Structured Enquiry	20
	Open Ended	20
	Experiment	
End Semester Assessment (20%)	Structured Enquiry	20
	Total	100

BACK

Program: Bachelor of Enginee	ering	Semester - IV	
Course Title: Vector Calculus a	Title: Vector Calculus and Linear Algebra		243
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 Hrs / we	eek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 Hrs	
	Unit - I		
Vector Algebra			
Vector addition, multiplicatio	n (Dot and Cross products), T	riple products,	04 hrs
Vector differentiation			
Vector functions, Vector diffe	rentiation, Velocity and Accel	eration of a vector point	06 hrs
function, Vector fields, Gradie	ent and directional derivative	S.	
Vector Integration			
Line and Surface integrals. In	dependence of path and pote	ential functions. Green's	40.1
theorem, Divergence of vec	tor field, Divergence theore	m, Curl of vector field.	10 hrs
Stokes theorem.			
	Unit - II		
Matrices and System of linea	r equations:		
Introduction to system of li	near equations and its solu	utions, elementary row	
operations-echelon form, Ra	ank of a matrix. Consisten	cy of system of linear	
equation, solution of system of	of equations by (i) Direct metl	nods -Gauss elimination,	12 hrs
Gauss Jordon method (ii) Ite	rative methods- Guass-Seida	al method. Eigen values	
and Eigen vectors of a matri	ix. Largest Eigen value and t	he corresponding Eigen	
vector by power method, App	olication case study.		
Vector space:			
Vector spaces and sub space	ces- examples, Linear comb	inations Spanning sets,	
subspaces, Linear spans Rov	v space of a matrix, Linear	dependence and linear	08 hrs
independence. Basis and din	nensions, application to mat	rices, Rank of a matrix.	
Sums and direct sums, Coord	inates, Application case study	<i>'</i> .	
	Unit – III		
Integral Transforms:			
 Laplace transformatio 	n and its applications		10 hrs
 Fourier transforms, Di 	screte Fourier transforms and	d its applications	
Text Books (List of books as r	mentioned in the approved s	vllahus)	Į.

Text Books (List of books as mentioned in the approved syllabus)

- 1. David C. Lay, "Linear Algebra and its Applications", 3rd Ed., Pearson Education, 2005
- 2. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001
- 3. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi, 2003

References

- 1. Seymour Lipschutz & Marc Lipson, Linear Algebra, Schaums' outline
- 2. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 3. Sastry S S, Introductory method for numerical analysis, 3ed, PHI, 2003
- 4. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th Ed, Sultan Chand & Sons, New Delhi, 2000.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7, Q.No-8	6	Solve Any 1 out of 2

BACK

Semester - V

Program: Bachelor of Engineering Semester - V			
Course Title: Software Engineer	ourse Title: Software Engineering Course Code: 22ECSC		301
L-T-P: 3-0-0	Credits: 4	Contact Hrs: 3 Hrs / week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hrs Exam Duration: 3 Hrs			
	Unit - I		
Chapter No. 1. Software Engine	eering process		05 hrs
Professional software develop	ment, Software engineering	ethics, Case studies,	
Software processes: Software p	process models, Process activ	vities and Coping with	
change.			
Chapter No. 2. Agile Software	Development		04 hrs
Agile methods, Plan-driven and	d agile development, Extrem	e programming, Agile	
project management.			
Chapter No. 3. Requirement En	ngineering		07 hrs
Functional and Non-function	nal requirements; The so	ftware requirements	
Document, Requirement spe	cification, Requirements Er	ngineering Processes,	
Requirements elicitation and	• • •	•	
management, Source Control N	Management, Collaboration to	ools.	
	Unit - II		
Chapter No. 4. System Modeling		05 hrs	
Context models, Interaction Models, Structural models, Behavioral models. Design			
Tools.			
Chapter No. 5. Architectural De	esign		05 hrs
Architectural Design Decisio	n, Architectural views, Ar	chitectural patterns,	
Application Architectures.			
Chapter No. 6. Software Testin	g		06 hrs
Development Testing, Test Driv	en Development, Release Tes	sting, User Testing and	
Testing Tools.			
	Unit – III		
Chapter No. 7. Introduction to DevOps			04 hrs
DevOps Principles in detail, Dev	·	ket , Knowing DevOps	
Delivery Pipeline , Market trend of DevOps , DevOps Technical Challenges , Tools			
we use in DevOps			
Chapter No. 8. Continuous integration and continuous delivery (CI/CD)		04 hrs	
Essentials of Continuous Integr	ation, An example scenario w	here CI is used, Know	
about Jenkins and its architec	ture in detail, Jenkins tool M	lanagement in detail,	
Know about User management	in Jenkins, Authentication		

Text Books (List of books as mentioned in the approved syllabus)

1. Ian Somerville, Software Engineering, 10th, Pearson Ed, 2015

2. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation (Addison-Wesley Signature Series (Fowler)) 1st Edition, by

Jennifer Davis & Ryn Daniels.ISBN-13: 978-

0321601919,ISBN10: 9780321601919

References

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 8th, McGraw, 2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 4th, Pearson Ed, 2010
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
ISA 1	15
ISA 2	15
 Software Testing integrated with Web technology course project and demonstration with software 	10
testing tool	10
 Continuation integration and delivary for web application using Jenkins tool 	
Total	50

BACK

Progr	am: Bachelor of Enginee	ring	Semester - V	
Cours	se Title: Computer Netwo	orks – I	Course Code: 19ECSC30	2
L-T-P:	3-1-0	1-0 Credits: 4		
ISA N	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40 hrs.	Tutorial: 28 hrs	Exam Duration: 3 hrs.	
		Unit –I		
	Introduction			
1	Introduction to Interne	et; The Network Edge and	Core; Delay, Loss, and	8 hrs
1	Throughput in Packet	-Switched Networks; Proto	col Layer and Service	0 1113
	Models: OSI and TCP/IP	. Networks Attacks.		
	Application Layer			
2	Principles of Network A	Applications; The Web and I	HTTP; Electronic Mail in	8 hrs
_	the Internet - SMTP; The Internet's Directory Service — DNS; Dynamically			0 1113
	configuring a host – DHCP; Peer-to-peer applications			
		Unit –II		
	Transport-Layer Service	es		
3	·	onless Transport, Principles o		8 hrs
•	Protocol, Connection-Oriented and Connectionless Transport, Principle of			0 10
	Congestion Control, TCI			
	Network Layer: Data pl			
4		and Control Plane, Virtual	_	8 hrs
	·	Protocol: Datagram Form	at, Fragmentation, IP	
	Addressing			
	Unit –III			
5	Network Layer: Data plane			4 hrs
	NAT, IPv6, Software Defined Network(SDN)			
6	•	l Plane and Network Manag		4 hrs
	SDN Control Plane, Net	work Management and SNM	۲ <u>۱</u> ۲	

Text Books:

1. J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson Education, 2017.

Reference Books:

- 1. Peterson, Larry L, Computer networks: A Systems Approach, 5th Edition, The Morgan Kaufmann series in networking, 2012
- 2. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010.

Computer Networks-I Tutorial

SI.	Exercise	No of Slots (2
No		hrs/per week)
1	Demonstration of n/w commands and tools in command prompt.	1
2	Demonstration of Cisco Packet Tracer network tool: usage of hub,	1
3	switch, and a router using a simple topology Application layer protocol implementation – Manual configuration and DHCP	1
4	Application layer protocol implementation - DNS and HTTP	1
5	Application layer protocol implementation - SMTP	1
6	Demonstration of static routing using Cisco Packet Tracer	1
7	Assessment – 1 (Demonstration of a given topology using Cisco Packet Tracer)	1
8	Demonstration of socket programming using a simple message board application - Connection oriented and connectionless.	1
9	Demonstration of simple banking application using connection oriented socket programming.	1
10	Demonstration of a simple calculator application using connectionless socket programming.	1
11	Assessment – 2 (Implementation of a given application using socket programming)	1
12	Exercise on usage of Wireshark tool to capture packets in the network.	1

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
1111	Q.No8	6	Solve Ally 1

BACK

Pr	ogram: Bachelor of Engineerin	ng	Semester - V	
Со	urse Title: System Software		Course Code: 17ECS	C302
L-1	Г-Р: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/w	veek
ISA	A Marks: 50	ESA Marks: 50	Total Marks: 100	
Te	aching Hrs: 40 hrs		Exam Duration: 3hrs	5
		Unit –I		
	Introduction to Machine Arc	hitecture		
1	Introduction, System Soft	ware and Machine Archi	tecture, Simplified	6hrs
1	Instructional Computer (SIC	C): SIC Machine Architectur	e, SIC/XE Machine	onrs
	Architecture, SIC, SIC/XE and	AVR Programming Examples		
	Assembler			
	Basic Assembler Function: A	Simple SIC Assembler, Asser	nbler Algorithm and	
2	Data Structures, Machine De	pendent Assembler Features:	Instruction Formats	10hrs
	& Addressing Modes, Prog	ram Relocation. Implementa	ition example: AVR	
	architecture, Machine depen	dent features.		
Unit -II				
	Assembler M/c Independent	Features and Design options		
3	Literals, Symbol Defined St	atements, Expressions, Prog	ram Blocks, Control	8 hrs
3	Sections and Programming	Linking, Assembler Design	Options: One Pass	0 1113
	Assembler, Multi Pass Assem	bler. AVR machine independe	nt features.	
	Loaders and Linkers			
	Basic Loader Functions: Des	sign of an Absolute Loader,	A Simple Bootstrap	
4	Loader, Machine Dependent	: Loader Features: Relocatio	n, Program Linking,	8 hrs
	Algorithm and Data Structures for a Linking Loader, M/c Independent Features:			
	Automatic Library Search, Loa	ader Options.		
1		Unit -III		
	Macro Processor			
	Basic Macro Processor Functions: Macro Definitions and Expansion, Macro			
5	Processor Algorithm and Data Structures, Machine Independent Macro			4 hrs
	Processor Features: Concatenation of Macro Parameters, Generation of Unique			
	Labels, Conditional Macro Expansion, Keyword Macro Parameters.			
	Back end of Compiler - Code	•		
6	Review of phases of compile	rs, code generation routines,	machine dependent	4 hrs
features.				
Text Books:				

- 1. Leland L.Beck , D. Manjula, System Software, 3rd edition, Pearson Education, 2012
- 2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers- Principles, Techniques and Tools, 2nd edition, Addison-Wesley, 2011

Reference Books:

- 1. Muhammad Ali Mazidi et al,The 8051 Microcontroller and Embedded systems, 2nd Edition, Pearson education, 2009
- 2. Mazidi MA, Naimisrmad, AVR microcontroller and embedded system using assembly and C, $2^{\rm nd}$ Edition, Prentice hall, 2010

Evaluation Scheme Scheme for In Semester Assessment (ISA)

Assessment	Weightage in Marks
ISA 1	20
ISA 2	20
Assignment	10
Total	50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2	
II	Q.No4, Q.No5, Q.No6	3,4,5	Solve Any 2	
III	Q.No7	6	Solve Any 1	
	Q.No8	7	Solve Ally 1	

BACK

Program: Bachelor of Engineering		Semester - V
Course Title: Machine Learning		Course Code: 22ECSC306
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 40 hrs	Practical: 28 hrs	Exam Duration: 3 hrs

	Unit –I		
1	Introduction and Regression: Fundamentals of ML, linear, ridge, lasso,	10 hrs	
_	elastic-net regression, evaluation.	10 1113	
2	Classification : Linear discriminant analysis, logistic regression, support vector	10 hrs	
	machines, decision tree, extra trees, Bayesian networks, evaluation.	10 1113	
3	Ensemble learning: Bagging, boosting, stacking, random forest, resampling	10 hrs	
3	methods, regularization for linear and logistic regression.	10 1113	
	Unit –II		
4	Neural networks: Perceptron, gradient descent, optimization algorithms,	12 hrs	
_	backpropagation, hyper parameters, regularization.	12 1113	
5	Deep neural networks: convolutional neural networks, various CNN	12 hrs	
	architectures, model selection and evaluation, bias-variance.	12 1113	
6	Seq2Seq models: Recurrent neural networks, long short-term memory, auto	10 hrs	
	encoders.	10 1113	

Reference Books:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning, MIT Press, 2016.
- 3. Aurelian Gerona, Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Publisher: O'Reilly Media, July 2016.
- 4. Luca Pietro Giovanni Antiga, Thomas Viehmann, Eli Stevens, Deep Learning with PyTorch Manning Publications, 2020.

List of Experiments:

Expt. No.	Experiments	No. of Slots
1	Introduction to Regression, regularization	2
2	Classification algorithms	2
3	Ensemble learning models	2
4	Perceptron networks, neural network training	2
5	Convolutional Neural Networks, State-of-the-art DNN models	2

6	Sequence models	2
---	-----------------	---

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
I	Q.No1, Q.No2, Q.No3, Q. No- 4	1, 2,3	Solve Any 3
II	Q.No5, Q.No6, Q.No7,Q.No-8	4,5,6	Solve Any 3
III	Lab exam	1,2,3,4,5,6	Lab exam evaluation

BACK

Program: Bachelor of Engineering S		Semester – V		
Cour	ourse Title: Web Technologies Lab Course Code: 21		21ECSP304	
L-T-P	: 0-0-2	O-0-2 Credits: 2 Co		rs/week
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teacl	hing Hrs:	Practical : 56 hrs.	Exam Duration:	3 hrs
	Introduction to HTML basic	s, JavaScript		
1	Introduction to World Wide	Web, Web Application Archi	itecture, HTML	4 hrs
	Basics, Cascading Style Shee	ets, JavaScript Basics, Bootstr	ар	
	RESTful API using NodeJS and Express			
2	Introduction to Node.js.Building servers using the http and net modules,			12 hrs
2	Node modules and events,	s, Express, REST API client, Postman, Accessing		12 1113
	Data, Data Security using Bcrypt. API security using JWT tokens.			
	Angular			
	Building blocks of Angular Apps, Components, Templates, Directives.			
3	Services, Dependency inject	tion, Bindings, observables, p	ipes, component	12 hrs
	communications, Forms, Interacting with servers using HTTP.			
	RouteGuard, Interceptors, Bundling and deploying applications, Hosting			
	React			
4	JSX, React Components, Interaction of Components, Lifecycle methods,		8 hrs	
	Form.			

Reference Books:

- 1. Robert W. Sebesta." Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 2. Nathan Murray, Felipe Coury, et al, "ng-book: The Complete Guide to Angular", FullStack.io Publications, 2019
- 3. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 4. Den Ward, "React Native Cookbook: Recipes for solving common React Native development problems", 2nd Edition.2019

Lab Plan

Expt./ Job	Lab assignments/experiment	No. of Lab. Slots per	
No.		batch (estimate)	
1	Demonstration on HTML, JavaScript	02	
2	Exercise on JavaScript	01	
3	Demonstration on Node	03	
4	Exercise on Node	01	
5	Demonstration on Angular	02	
6	Exercise on Angular	01	
7	Demonstration on React	02	
8	Exercise on React	01	
9	Structured enquiry 1 – MEAN	02	
10	Structured enquiry 2 – React	02	

BACK

Program: Bachelor of Engineering		Semester - V
Course Title: System Software Lab		Course Code: 19ECSP302
L-T-P:0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Tutorial: 42 hrs	Exam Duration: 3hrs

Sl. No	Experiments	Slots/Hrs
1.	Practice programs on user defined functions , structures and	3 hrs
	programs on file handling	313
2.	Introduction to basics of given assembly language Programs	3 hrs
3.	Evaluation on given assembly language Program	3 hrs
4.	Implementation of Pass 1 Assembler	3 hrs
5.	Implementation of Pass 2 Assembler	6 hrs
6.	Implementation of Pass 1 Linking loader	3 hrs
7.	Implementation of Pass 2 linking loader	6 hrs
	Course Project on identifying machine to implement assembler ,	
8.	learning its architectural features and design Pass 1 Assembler or	6 hrs
	Pass2 Assembler	

Reference Books:

- 1. Leland.L.Beck and D. Manjula, System Software, 3rd edition, Pearson Education, 2011.
- 2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers- Principles, Techniques and Tools, 2nd Edition, Addison-Wesley, 2011.

BACK

Program: Bachelor of Engineering		Semester - V
Course Title: Mini Project		Course Code: 15ECSW301
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3 Hrs

Student Evaluation Matrix

SI. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 & peer review:	Final Demo & exhibition Peer review will be done after review 1 & review 4)	10
	Total		

Scheme for End Semester Assessment (ESA)

ESA Evaluation (50 Marks)

SI No	Description	Marks
1	Write up – Learning from Project, Personal Contribution to project	05
2	Final demo & Presentation (Solution approach to the identified problem, testing and results)	35
3	Individual Contribution to the team	10
	50	

BACK

Progra	am: Bachelor of Engineering			
Course Title: Statistics and Probability Course Code: 15EMAB3			303	
L-T-P:	L-T-P: 3-1-0 Credits: 4 Contact Hrs: 5hrs/we		ek	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40 hrs	Tutorial: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Description of Data			
1	Introduction - Data, Variabl	es, Graphical representatior	n and interpretation of	05
_	data, Measure of Skewness	s, Comparison of data sets ι	using central tendency	hrs
	and dispersion, Choice of su	uitable measure for data ana	lysis.	
	Correlation and Regression			
	Correlation and Regression	on: Meaning, scatter diag	gram, Karl Pearson's	05
2		imits of correlation coeffici	•	hrs
	regression coefficients, pr	operties, Angle between	two regression lines,	
	Examples			
	Probability			06
3	Introduction-Definition, Axioms, addition and multiplication rule of probability			hrs
(without proof), conditional probability, Baye's rule –examples				
		Unit –II	T	
	Theoretical distributions	5 1 5:		06
4	Random variables-simple Examples, Discrete and continuous random			
	variables; Theoretical distributions: Binomial, Poisson, Exponential, Normal,			hrs
	Uniform			
	Sampling distributions	maling distribution Stand	land array Null and	
5	Introduction-Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type-I and Type-II errors, level of significance,			
3		s, testing of hypothesis for r	_	hrs
	samples, Student's t-test an		neans, large and smail	
Unit –III				
	Tests of Hypothesis – 2			
		orrelation, Chi-square test fo	or goodness of fit, test	08
6	for dependence of attribute	•	6500000 01 110, 0000	hrs
	6.2 ANOVA -one way and to			•
Tarak D	Text Books (List of hooks as mentioned in the approved syllabus)			

Text Books (List of books as mentioned in the approved syllabus)

- 1. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th Ed, Sultan Chand & Sons, New Delhi, 2000.
- 2. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

References

- 1. Murray R Spiegel et al, theory and problems of Probability and Statistics, 2ed. McGraw Hill, Schaum's Outline series, 2004.
- 2. Miller, Freud and Johnson, Probability and Statistics for Engineering, 5ed, PHI publications, 2000.
- 3. Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, 1ed, PHI, 2000.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7, Q.No-8	6	Solve Any 1 out of 2

BACK

Semester - VI

Drogr	Dragram, Pachalar of Engineering Competer VI			
	Program: Bachelor of Engineering Semester - VI			
Course Title: Computer Network-2		Course Code: 20ECSC3		
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teach	Teaching Hrs: 40 hrs Exam Duration: 3 hrs			
		Unit –I		
	Network Layer- Routing Algorithms The Link-State (LS) Routing Algorithm,			
	The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing			08
1	in the Internet, intra-AS	Routing in the Internet: RIP,	Intra-AS Routing in the	hrs
	Internet: OSPF, Inter-A	S Routing: BGP. Broadcast a	and Multicast Routing,	1115
	Broadcast Routing Algor	rithms.		
	Network Layer Broad	dcast and Multicast Rout	ing algorithms, Error	
•	Reporting, Router struc	cture, Buffering strategies:	nput queuing, Output	08
2	queuing, Application	of queuing theory for per	formance of queuing	hrs
	mechanisms, M/M/1, M	1/M/m system, M/M/B syste	m.	
	Data Link Layer Introd	duction to the Link Layer,	Error-Detection and -	
	Correction Techniques:	Parity Checks, Check sum	ming Methods, Cyclic	
	Redundancy Check (CRC	C), Hamming Code,		00
3	Multiple Access Links	and Protocols: Channel	Partitioning Protocols,	08
	Random Access Proto	ocols: Aloha, Slotted Aloh	na, CSMA, CSMA/CD,	hrs
	CSMA/CA, Taking-Turn	s Protocols, The Link-Laye	er Protocol for Cable	
	Internet Access.			
Unit –II				
	Switched Local Area Networks Link-Layer Addressing and ARP, Ethernet			
	802.3, Token ring 802.	5, FDDI, and LAN standard	s, Link-Layer Switches,	
4	Virtual Local Area Networks (VLANs), Multiprotocol Label Switching (MPLS),			08
	Data Center Networkin	g, Retrospective: A Day in t	he Life of a Web Page	hrs
	Request.			
	Wireless and Mobile No	etworks Wireless Links and N	etwork Characteristics,	
_	802.11 Wireless LANs	, Architecture, MAC Proto	ocol, Frame, Mobility,	04
5	Personal Area Networl	ks: Bluetooth and Zigbee.	Cellular Networks and	hrs
	Internet Access, Mobility, Mobile IP, Managing Mobility in Cellular Network.			
	Multimedia Networkin	g: Multimedia Networking A	Applications, Streaming	0.4
6	Stored Video, Voice-o	over-IP, Protocols for Rea	I-Time Conversational	04
	Applications.			hrs
Text Books:				
1.	1. J. F. Kurose, K. W. Ross, Computer Networking, A Top-Down Approach, 7th Edition,			
	Pearson Education, 201	7		
Refer	Reference Books:			

- 1. Peterson, Larry L, Computer networks: a systems approach, 5th Edition, The Morgan Kaufmann series in networking, 2012
- 2. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3, Q.No4, Q.No5	1,2,3	Q.No-1 is compulsory. Answer any 2 from Q Nos. 2,3,4,5.
II	Q.No6, 7, 8	4, 5, 6	Q. No-6 is compulsory. Answer any 1 from Q Nos 7,8.

BACK

Progra	am: Bachelor of Engineer	ing	Semester - VI	
Cours	Course Title: Distributed and Cloud Computing Course Code: 20		Course Code: 20E	CSC305
L-T-P: 2-0-1 Cre		Credits: 3	Contact Hrs: 4hrs/wee	
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		0	
Teach	ing Hrs: 30	Practical: 28 hrs	Exam Duration: 3	hrs
		Unit –l		
	Distributed System Mod	dels and Enabling Technologic	es	
1	Scalable Computing ove	r the Internet, Technologies fo	or Network-Based	4 hrs
	Systems, System Models for Distributed and Cloud Computing			
	Virtual Machines and V	irtualization of Clusters		
2	· ·	of Virtualization, Virtualization	•	4 hrs
_		alization of CPU, Memory, and	I/O Devices,	
	Virtual Clusters and Res			
_		cture over Virtualized Data Co		
3		ervice Models, Architectural D	esign of Compute	4 hrs
	and Storage Clouds, Public Cloud Platforms.			
		Unit –II		
	Cloud Programming and Software Environments		rede in a d	a l
4	Features of Cloud and Grid Platforms, Parallel and Distributed			4 hrs
	Programming Paradigms, Programming Support of Google App Engine. Cloud Resource Management			
		s for resource management, A	applications of	
5			• •	4 hrs
	control theory to task scheduling on a cloud, Scheduling algorithms for computing clouds. Fair queuing, Start-time fair queuing, Borrowed			71113
	virtual time.	queumb, start time fan queum	18, DOTTOWEG	
	Cloud Security			
	-	acy; privacy impact assessme	nt, Trust, Security	
6	• •	y risks posed by shared image	•	4 hrs
	posed by a managemen	t OS, Xoar - breaking the mon	olithic design of	
	the TCB, A trusted virtual machine monitor.			
	Unit –III			
7 Docker Containers			3 hrs	
	Introduction, Docker sw	arm, Kubernetes.		5 1115
	Building containerized	applications		
8	Microservice architectu	re, building micro services and	l containerized	3 hrs
	applications.			

Text Books:

- 1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Parallel Processing to the Internet of Things, Elsevier, 2013.
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, Elsevier, 2013.
- 3. Nigel Poulton, The Kubernetes Book, Packt Publishing, 2019.

Reference Books:

- 1. Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi, Mastering Cloud Computing, McGraw Hil, 2013.
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, McGraw Hil, 2010.

List of Experiments:

Expt./Job	Brief description about the experiment/job	
No.	and accompany jes	
1.	Hypervisors (Type-I and Type-II). Virtual machines with Para/Full	
1.	Virtualization	
2. Implementation of cloud service models(IaaS, PaaS, SaaS)		
3. OS-level virtualization		
4. Building containerized application		
5.	Cloud resource scheduling and security mechanisms	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
ı	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
'''	Q.No8	8	Solve Ally 1 out of 2

BACK

Prog	ram: Bachelor of Eng	ineering	Semester - VI	
Cour	Course Title: Blockchain and Distributed Ledgers Course Code: 22ECSC30		Course Code: 22ECSC307	
L-T-P	-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/week			
ISA I	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teac	hing Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction			
	Overview of blockchain, Digital Money to Distributed Ledgers, Design			6 hrs
1	Primitives: Protocols, Security, Consensus, Types of blockchain,			
_	blockchain platform	s, Blockchain Architecture	e, Blockchain Use Cases:	
	Finance, E-Governa	nce, Supply chain manage	ement, Healthcare	
	management and cy	ber security.		
	Cryptography Basic	s		
2	Introduction to cry	ptography, Public key o	crypto: Introduction, RSA,	6 hrs
	Digital certificate, PKI, Hash Functions: Introduction, SHA, Digital			
	signature Schemes:	RSA, Digital Signature Sta	ndard, Merkle trees.	
Unit –II				
	Consensus Mechanisms			
	Basic consensus	mechanisms, Requireme	ents for the consensus	6 hrs
3	protocols, Proof of	f Work, Proof of State,	Proof of Activity, Practical	
	Byzantine Fault Tole	erance (PBFT), Federated	PBFT, Consensus protocols	
	-	rms, Scalability issues of c	onsensus protocols.	
	Blockchain Platform			
	Ethereum and Smart Contracts			6 hrs
		•	ns, accounts, smart contracts, smart contract	
4	·	ty basics, basic contracts,	-	
		ng, Applications of Ethere		
		andards, Fungible and No	on-Fungible Tokens, crowd	
	funding			
Unit –III				
	Enterprise Blockcha			6 1
_		Introduction, Architectur	e, Identity, Membership	6 hrs
5	and Peer Management, Chain codes.			
	Corda: Principal	Features, Architecture		
D - 1	Mechanisms in Hyperledger Fabric and Corda.			
Reference Books:				

Reference Books:

- 1. Narayanan, Bonneau, Felten, Miller and Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press, 2016.
- 2. Rogen Wattenhofer, "Blockchain Science: Distributed Ledger Technologies", 1st Edition, Inverted Forest Publishing, 2019

- 3. Andreas A, Gavin Wood, "Mastering Etherium: Building smart contracts and DApp", 1st Edition, O'Reilly Media, 2018.
- 4. Matt Zand, Xun Wu, Mark Anthony Morris, "Hands-On Smart Contract Development with Hyperledger Fabric V2", 1st Edition, O'Reilly Media, 2018.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
CIVIT	Marks Each	Numbers	ilistructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
Ш	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
'''	Q.No8	8	Solve Ally I out of Z

Expt./Job No.	Brief description about the experiment/job	
1.	Overview and Demonstration of Ethereum smart contracts	
2.	Solidity programming- Data types, control structures and	
2.	functions	
3.	Deploying contract using external blockchain using	
J.	Metamask/Myetherwallet	
4.	Creating custom Ethereum blockchain using Geth	
5.	Connecting to Geth node using Web3	
6	Create a permissioned blockchain network using Hyperledger	
	Fabric.	
7	Write chain code for given problem	
8	Create distributed storage using IPFS.	
9	Connect IPFS to Ethereum and Hyperledger Fabric	
10	Course Project	

BACK

Program: Bachelor of Engineer	Semester - VI	
Course Title: Computer Network Laboratory		Course Code: 20ECSP305
L-T-P:0-0-1.5	Credits: 1.5	Contact Hrs: 3hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3 hrs

List of Experiments

SI. No	Experiments	Number of lab Slots (3 hrs)
1.	Demonstration of Mininet and Performance analysis of IEEE 802.11 MAC protocols.	1
2.	Traffic measurement and traffic volume control using the POX controller.	1
3.	Implementation of load balancing/routing technique.	2
4.	Error Detection and Correction using Socket programming.	1
5.	Demonstration of Junos.	1
6.	Configuration and analysis of VLAN.	1
7.	Configuration and analysis of STP/MPLS.	1
8.	Configuration and analysis of OSPF and BGP routing protocols.	2
9.	Experimental analysis of the Handover Procedure in a WiFi Network using Mininet	1
10.	Performance analysis of IEEE 802.11 MAC protocols.	1

BACK

Program: Bachelor of Engineering		Semester - VI
Course Title: Minor Project		Course Code: 15ECSW302
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3hrs

Sixth semester minor project themes:

Networking	Data Engineering	System Engineering	
Internet of Things	Data Analytics	Parallel Computing	
 Cloud Computing 	Data Processing:	• HPC (High	
• SDN (Software	 Image and video 	Performance	
Defined	processing	Computing)	
Network)	• Computer Vision	 Parallel system 	
 SNA(Social 	and Graphics	design	
Network Analysis)	NLP(Natural		
	Language		
	Processing)		

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation	
Review-1	Problem Definition and Synopsis	
Review-2	Requirements, Algorithms, Design	
Review-3	Implementation	

Scheme for End Semester Assessment (ESA)

SI. No	Expectation	Marks
	Write up	
	1. Problem Statement.	
1	2. Existing and Proposed system.	
	3. System Model with brief description.	
	4. Functional and Non Functional Requirements.	
2	Presentation: Prepare minimum of 15-18 slides of presentation	08
2	with consultation of your respective guides.	08
Demo (Complete execution of the project with results) an		25
3	voce.	25
4.	Project Report.	12

BACK

Semester: VII

Prog	ram: Bachelor of Engineering		Semester: VII	
Cour	Course Title: Big Data and Analytics Course Code: 17ECSC40		C401	
L-T-P): 2-0-1	Credits: 3	Contact Hours: 4 hrs	/Week
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	Teaching Hrs: 30 hrs Practical: 28 hrs Exam Duration: 3 hrs			3
		Unit –I		
1.	Introduction: Big Data, Data	Analytics, Data Analytics Life	Cycle, Big Data	3 hrs
	Characteristics, Different Type	es of Data.		3 1113
	Big Data Storage: Clusters, Fil	e Systems and Distributed F	ile Systems, NoSQL,	
2.	Sharding, Replication, Combir	ning Sharding and Replicatio	n. On Disk Storage	5 hrs
	Devices, In-memory Storage I	Devices.		
3.	Big Data Processing: Parallel Data Processing, Distributed Data Processing,			
<u>J.</u>	Hadoop, Map Reduce, Examp	les on Map Reduce.		5 hrs
	Unit – II			
	Stream Processing: Introduction to Stream Processing-Batch Versus Stream			
	Processing; Examples of Strea	m Processing; Scaling Up D	ata Processing;	
4.	Distributed Stream Processing	g; Stream-Processing Model	- Sources and Sinks,	6 hrs
	Immutable Streams Defined f	rom One Another, Transforn	nations and	
	Aggregations, Window Aggre	gations, Stateless and Statef	ul Processing.	
_	Big Data Technologies: Mong	goDB – Introduction to Mon	goDB, RDBMS Vs	6 hrs
Э.	MongoDB, Data Types in MongoDB, MongoDB Query Language.			o nrs
Unit – III				
	Big Data Visualization: Introd	duction to Hive, Hive Archite	ecture, Hive Data	
6.	6. Types, Hive File Format, Hive Query Language (HQL), RCFile Implementation,			
	User-Defined Function (UDF).			
Taret	Doolse			

Text Books:

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley India Pvt Ltd 2014.
- 3. Gerard Maas and François Garillot, Stream Processing with Apache Spark Mastering Structured Streaming and Spark Streaming, O'REILLY, 2019

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Credit: 1	Big Data and Analytics Lab
	Preamble:
	Data is created constantly, and at an ever-increasing rate. Mobile phones, social
	media, imaging technologies to determine a medical diagnosis—all these and
	more create new data, and that must be stored somewhere for some purpose.
	Devices and sensors automatically generate diagnostic information that needs to
	be stored and processed in real-time. Merely keeping up with this huge influx of
	data is difficult, but substantially more challenging is analyzing vast amounts of
	it, especially when it does not conform to traditional notions of data structure,
	to identify meaningful patterns and extract useful information. These challenges
	of the data deluge present the opportunity to transform business, government,
	science, and everyday life.
	Objective: The student should be able to use Big Data and Analytics Frameworks
	and tools for handling, processing, and analyzing huge datasets.
	Team size: Group of 3- 4
	Type: Each batch will work for one distinct application area

SI.	Experiments	СО	Blooms	Timeline	PI	Hrs	Marks
No.			level	wrt COE	code		
1.	Hadoop Installation	CO1	L3	1 st &2 nd	1.4.1	4	Nil
	Assignment of the following			week			
	application areas to each batch:						
	1) Financial Data Analysis						
	2) Market-Basket Analysis						
	3) Telecommunication Industry						
	4) Health Care						
	5) Agriculture						
	6) Public Security						
	7) Bio-informatics						
	Others						

2.	Problem Data Identification (10 M) a) Learning the domain (2M) b) Assessment of resources available(2M): i) People ii) Technology iii) Time c) Framing the Problem (Identifying Issue to be addressed) (2M) d) Developing Initial Hypothesis (2M)	CO1	L3	3 rd Week	2.3.1	2	10
3.	Identifying potential Data sources (2M) Data/File handling on DFS through NoSQL, Sharding, and Replication	CO2	L3	4 th Week	2.3.1	2	Nil
4.	Data Preparation: (10M) a) Preparing the Analytic Sandbox (2M) b) Performing ETLT (2M) c) Data Conditioning (3M) Data Visualization (3M)	CO2	L3	5 th & 6 th Week	1.4.3	4	10
5.	Design and Model Selection	CO2	L3	7 th & 8 th Week	2.3.1	4	10
6.	Implementation	CO3	L3	9 th , 10 th & 11 th Week	5.3.1	6	10
7.	Presentation and Report	CO4	L3	12 th Week	10.1.2	2	10
	Total					24	50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7	6	Solve Any 1
111	Q.No8	6	Solve Ally 1

BACK

Prog	gram: Bachelor of Engineer	ring	Semester: VII		
Cou	Course Title: Information Security Course Code: 20ECSC402				
L-T-I	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Tead	ching Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3 hrs		
		Unit –I			
1. Cryptography Basics: Introduction, OSI Security architecture, Secure design				6 hrs	
	principles, A model for	network security, Classic	Crypto: Substitution and		
	Transposition ciphers, Tax	conomy of Cryptography a	nd Cryptanalysis.		
2.	Symmetric and Asymme	etric Key Crypto: Symm	etric Key Crypto: Stream	6 hrs	
	ciphers, Feistel Cipher, Blo	ock Ciphers-AES, DES, IDE	A, Block cipher modes,		
	Asymmetric Key Crypto	: Knapsack, Diffie-Hellma	an, Elgamal cryptosystem,		
	Elliptic Curve Cryptograph	ny			
		Unit –II	-		
3.	Data Integrity Algorithms and Key Management: Cryptographic Hash 6 hrs				
	Functions: Hash functions based on cipher block chaining, Message				
	authentication codes: requirements and functions, HMAC. Digital signatures:				
	Elgamal Digital signature	scheme, Elliptic Curve D	Digital Signature Algorithm		
	(ECDSA). Key Manageme	nt: Symmetric key distribu	ition, Distribution of public		
	keys				
4.	Authentication and Aut	horization: Introduction,	Authentication Methods:	6 hrs	
	Passwords, Two-Factor	Authentication, Single	Sign-On, Authentication		
	Protocols. Authorization:	Access Control Matrix, N	Multilevel Security Models,		
	Multilateral Security, Fire	walls, Intrusion Detection,	Access control in Cloud		
		Unit –III			
5.	Application and Transpo	ort Security Protocols: In	ntroduction, Pretty Good	3 hrs	
	Privacy and S/MIME, Secure Socket Layer, Transport Layer Security, SSH,				
Kerberos					
6.	Network and Wireless	Security Protocols: IPSe	c overview, Encapsulating	3 hrs	
	security payload, combini	ing security associations, I	nternet key exchange, GSM		
	Security, IEEE 802.11 Wire	eless LAN Security.			
Tovt	Book		1		

Text Book

- 1. Mark Stamp, "Information Security: Principles and Practices", 3rdEdition, John Wiley and Sons, 2021.
- 2. William Stallings, Cryptography and Network Security Principles and Practices, 8th Edition, Pearson, 2020.

References

- 1. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography", 3rd edition, CRC Press, 2020.
- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2015.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7	5	Solve Any 1
'''	Q.No8	6	Solve Ally I

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots each of 2 hours
1.	Demo and practice on Crypto Library	1
2.	Implementation of symmetric key algorithm	1
3.	Implementation of Asymmetric key algorithm and Hash functions	2
4.	Course project	4
	16	

BACK

Program: Bachelor of Engineering		Semester: VII
Course Title: Senior Design Project		Course Code: 20ECSW401
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3 hrs

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles - design patterns (creational, behavioral & structural), User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project Domains:

Networking	Data Engineering	System Engineering
 Internet of Things 	 Data Analytics 	Parallel
 Cloud Computing 	Data Processing:	Computing
 SDN (Software 	 Image and video processing 	HPC (High
Defined Network)	 Computer Vision and 	Performance
SNA(Social	Graphics	Computing)
Network Analysis)	 NLP(Natural Language 	 Parallel system
	Processing)	design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation			
Review-1	Literature Survey, Problem Analysis and Problem			
Review-1	formulation			
Review-2	Requirements, Design, design principles adopted in			
Review-2	modules/components and Algorithms.			
Review-3	Implementation and Testing.			

Scheme for End Semester Assessment (ESA)

Sl. No.	Expectation	Marks
1	 Write up Problem Statement and Objectives. System design with brief description. Concluding remarks. 	05
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	05
3	Demo (Complete execution of the project with results) and Viva voce.	30
4.	Project Report.	10

BACK

Prog	ram: Bachelor of Engineering		Semester: VII		
Course Title: CIPE Course Code: 15E		SA401			
L-T-P	7 : 2-0-0	Credits: Audit	Contact Hrs: 2 hrs/v	week	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100					
Teaching Hrs: 30 hrs Exam Duration: 3 hrs				rs	
	Unit – I				
	Features of Indian Constitution	on			
	Features of Indian Constitution	n, Preamble to the constitu	tion of India,		
1.	Fundamental rights under Part III – details of Exercise of rights, Limitations &			4 hrs	
1.	Important cases. Berubari Un	ion and Exchange of Enclave	es, Kesavanand	7 1113	
	Bharati vs. UOI, Maneka Gano	dhi vs. UOI, Air India Ltd. vs.	Nargees Meerza,		
	T.M.A. Pai Foundation vs. St. o	of Karnataka, M.C. Mehta vs	. UOI etc.,		
	Relevance of Directive princip	•			
2.	Relevance of Directive princip	•	rt IV, Fundamental	3 hrs	
	duties & their significance. Sa	rla Mudgal v. UOI			
	Union				
3.	Union – President, Vice President		ters, Prime	4 hrs	
	Minister, Parliament & the Supreme Court of India.				
	State				
4.	, , ,			2 hrs	
	Legislature and Judiciary.				
_	Constitutional Provisions for				
5.	5. Constitutional Provisions for Scheduled Castes & Tribes, Women & Children &			2 hrs	
	Backward classes, Emergency Provisions.				
	Electoral process			2 6	
6.	, , , , , , , , , , , , , , , , , , , ,			2 hrs	
	Constitutional amendments.				
	Scope & Aims of Engineering	Unit – II			
	Scope & Aims of Engineering		a of Engineering		
7.		•		5 hrs	
'`	Ethics, Responsibility of Engineers, Impediments to responsibility, Honesty, Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas				
	Tragedy, Titanic case.				
8.	Intellectual Property Rights Intellectual Property Rights (IPRs)- Patents, Copyright and Designs			3 hrs	
	Ethical perspectives of professional bodies				
9.	Ethical perspectives of profess		ISPF and ABFT	3 hrs	
5.	ASCE etc.			5 5	
	AGOL CIC.				

Unit – III				
	Effects of human activities on environment			
10	Effects of human activities on environment - Agriculture, Housing, Industry,	2 hrs		
10.	Mining, and Transportation activities, Environmental Impact Assessment,			
	Sustainability and Sustainable Development.			
	Environmental Protection			
11.	Environmental Protection – Constitutional Provisions and Environmental Laws	2 hrs		
	in India.			

Text Books (List of books as mentioned in the approved syllabus)

- 1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005
- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publicaitons, Allahabad, 2010.
- 3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003

References:

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
Minor Exam-1	20
Minor Exam-2	20
Assignment	10
Total	50

BACK

Semester-VIII

Program: Bachelor of Engineering		Semester-VIII
Course Title: Industry Project		Course Code: 20ECSW494
L-T-P: 0-0-11	Credits: 11	Contact Hrs: 22 hrs/week
ESA Marks: 50	ISA Marks: 50	Total Marks: 100
Teaching Hrs:		Exam Duration: 3 hrs

Overview of the Course

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Course Learning Outcomes.

- **CO 1.** Identify the problem and perform requirement analysis
- **CO 2.** Design potential solutions and evaluate to select optimal solution
- **CO 3.** Apply professional norms of project implementation to meet specified requirements
- **CO 4.** Apply fundamental activities of module, integration and system testing to validate the system
- **CO 5.** Analyze results and present technical/scientific findings effectively through written and oral mode

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA	Max ESA	Minimum Passing
Country		marks	marks	Marks
				Students must
Industry Project	18ECSW494	50	50	secure minimum of
				40% marks in both
				ISA and ESA.

KLE Technological University's Industry Internship: Rules, Regulations and Timelines for BE 2020 passing out students-

Internship Start Date: 6th January, 2020

Internship End Date: 31st May,2020 (exceptional cases up to 30th June, 2020)

<u>Total Duration</u>: 5 months full time (No breaks)

- 1. Students of 8th semester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and ii) Internship Project
 - i) Internship- Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webex or personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship-Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

BACK

Program: Bachelor of Engineering		Semester: VIII
Course Title: Industry Training		Course Code: 20ECSI493
L-T-P: 0-0-6 Credits: 6		Contact Hrs: 12 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs:		Exam Duration: 3 hrs

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain first-hand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

- **CO 1.** Enhance their employ ability skills and become job ready along with real corporate exposure.
- **CO 2.** Acquire knowledge in one particular technology.
- **CO 3.** Demonstrate leadership ability and responsibility to perform the given task.
- **CO 4.** Offered jobs in the organizations in which they undergo their Industrial Training.
- **CO 5.** Demonstrate common practices, employment opportunities and work ethics in their relevant

Scheme for in Semester Assessment (ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Training	18ECSI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

KLE Technological University's Industry Internship: Rules, Regulations and Timelines for BE 2020 passing out students-

Internship Start Date: 6th January, 2020

Internship End Date: 31st May,2020 (exceptional cases up to 30th June, 2020)

Total Duration: 5 months full time (No breaks)

- 1. Students of 8th semester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and ii) Internship Project
 - i) Internship-Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webex or personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

BACK

Program: Bachelor of Engineering		Semester - VIII	
Course Title: Capstone Project		Course Code: 20ECSW402	
L-T-P: 0-0-11 Credits: 11		Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching hrs:	Teaching hrs: Tutorial/Practical: 42 hrs		

Eighth Semester Capstone project: Design a suitable solution for the identified problem and apply professional norms of project implementation to meet specified requirements.

Project domains:

Networking	Data Engineering	System Engineering	
Internet of Things	Data Analytics	Parallel Computing	
Cloud Computing	Data Processing:	 HPC(High 	
 SDN(Software 	 Image and video 	Performance	
Defined Network)	processing	Computing)	
SNA(Social Network	 Computer Vision and 	 Parallel system 	
Analysis)	Graphics	design	
	 NLP(Natural 		
	Language Processing)		

Students Assessment through ISA (50%) + ESA (50%)

	Assessment	Weightage in Marks
Internal Semester Assessment*	Periodic reviews by Project	25
(50%)	Guide	23
	Periodic reviews by	25
	Committee	25
End Semester Assessment (50%)	Final Review	50
Life Semester Assessment (50%)	Total	100

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation	
Review-1	Motivation, Literature Survey, Problem Analysis and Problem formulation, Objectives, Oral Communication	
Review-2	High Level Design/Methodology, Suitable data structures and programming paradigm, Modern tools & techniques used,	

Module implementation & amp; integration, Presentation &	
	Report
Review-3	Complete Project Demo, Report, Presentation / Paper Publication

Scheme for End Semester Assessment (ESA)

Sl.No	Expectation	Marks
1	Literature Survey/ Existing Methods	15
2	Methodology and Implementation details, Results and Discussions	20
3	Project demonstration.	10
4.	Relevance of project to ethical/ social/ legal/ economic concerns	05
	Total	50

BACK

Open Elective

Prog	ram: Bachelor of Engine	eering			
Cour	Course Title: High Performance Computing for Course Code:15ECSO4				
Engi	Engineering Applications				
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/we	ek	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs		
		Unit –I			
	Introduction to High P	erformance Computing:			
	Computational Science	e and Engineering Application	s; characteristics and		
1.	requirements, Review	of Computational Complexity,	Performance: metrics	8 hrs	
	and measurements	s, Granularity and Par	rtitioning, Locality:	0 1 0	
	temporal/spatial/strea	m/kernel, Basic methods for p	parallel programming,		
		s like CFD, Bioinformatics, Flow a	analysis etc.		
	High Performance Con				
	•	s, Multi-core Processors:	Homogeneous and		
2.		red-memory Symmetric Mul		8 hrs	
	•	d Memory Computers, Supercor	•		
	'	Accelerators / Reconfigurable	e Computing, Novel		
	computers: Stream, multithreaded, and purpose-built				
	Unit –II				
	Parallel Algorithms:				
		nd real frameworks, Basic Techn	•		
3.	. •	de and Conquer, Partitioning,		8 hrs	
	-	d Linear Algebra, Irregular Alg			
	Graphs, Randomization: Parallel Pseudo-Random Number Generators,				
	Sorting, Monte Carlo to	·			
	Parallel Programming:				
4.		in applications, Task and Funct	•	8 hrs	
	Scheduling, Synchror	·	Primitives (collective		
	operations), SPMD Pro	gramming (threads, OpenMP, M	IPI)		
Unit –III					
	Achieving Performance		la cardia Barda al Para		
5.		ce, Identifying performance bottlenecks, Restructuring memory hierarchies, Partitioning applications for			
		•	•		
		ces, using existing libraries, tools	, and frameworks		
6.	_	ects done during the course:		4 hrs	
	various case studies fro	om various engineering disciplin	e		

Text Books

- 1. Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.
- 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

- 1. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.
- 2. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally I

BACK

Prog	ram: Bachelor of Eng	gineering		
Cou	rse Title: Essentials o	f Information Technology	Course Code: 15ECS	O405
L-T-F	P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week	
ISA I	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	hing Hrs:	Practical: 84 hrs	Exam Duration: 3 h	rs
		Unit - I		
1.	networks, software	mputer systems: computer systems, program execute e and its classification, Operating S ment, process management, file ma	ystem: introduction,	6 hrs
2.	Programming basics: Introduction to problem solving, SDLC overview and need for object oriented approach, object oriented concepts, introduction to java, control structures, arrays, strings.			6 hrs
3.	Classes and Objects: Class fundamentals, access specifiers, constructors and its types, method overloading, static members.			4 hrs
		Unit – II		
4.	-	ar data structures: stack, queue, lin ees, binary search tree, illustration		5 hrs
5.	Inheritance and Polymorphism: Inheritance: basics, types of inheritance, method overloading and overriding, dynamic method dispatch.		5 hrs	
6.	Packages, Interfaces and Exceptions: Introduction to packages, access protection, interfaces, exception handling mechanism, and user defined exceptions.		6 hrs	
		Unit - III		
7.	Database Design P Characteristics of schema, normaliza	DBMS, ER model, mapping ER	model to relational	4 hrs

	Structured Query Language:	ı
8.	SQL data types, database languages, operators, aggregate functions, order	4 hrs
	by and group by clause, joins and sub queries.	1

Text Books:

- **1.** Infosys Campus Connect Foundation Program Volume:1–3, Education and Research Department, Infosys Technologies Ltd, 2013.
- 2. Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill, 2012.

Reference Books:

- **1.** Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition, Pearson Education, 2011.
- 2. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
I	Project Examination	4 - 8	Project implementation and demonstration 20 marks

BACK

Prog	ram: Bachelor of Engine	eering		
Cour	rse Title: Software Engir	eering	Course Code: 15ECSO	103
L-T-P	? : 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit –I		
1.	studies, Software pro	e development, Software engocesses: Software process mod The rational unified process, C	els, Process activities,	6 hrs
2.	Agile Software Develor Agile methods, Plan-or Agile project manager	Iriven and agile development, E	extreme programming,	4 hrs
з.	Requirement Engineering Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirement's elicitation and analysis; Requirements validation; Requirements management.		6 hrs	
		Unit –II		
4.	System Modeling Context models, Inter	action Models, Structural mode	ls, Behavioral models.	6 hrs
5.	5. Architectural Design Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.		5 hrs	
6.	6. Object-Oriented design and implementation Object oriented design using UML, design patterns, Implementation Issues, Open source development.		5 hrs	
Unit –III				
7.	Software Testing Development Testing Testing.	, Test Driven Development,	Release Testing, User	4 hrs

8.	Configu	ration managen	nent					4 hrs
	Change	management,	Version	management,	System	building,	Release	
	manage	ment.						

Text Books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

Reference Books:

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
""	Q.No8	8	

BACK

Course Title: Big Data Analytics L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/week ISA Marks: 50 Teaching Hrs: 40 hrs Cunit –I Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark Nosql: NoSql: Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). Big data applications and case study: Stock market analysis, weather data analysis	Program: Bachelor of Engineering					
ISA Marks: 50 Teaching Hrs: 40 hrs Unit –I Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data. 2. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Widecolumn stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 7. Big data applications and case study: Stock market analysis, weather data 4 hrs	Cour	rse Title: Big Data Analytics		Course Code: 18ECSO401	L	
Teaching Hrs: 40 hrs Unit –I Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data. 4 hrs Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark Nosql: NoSQL Databases, Document databases, Key-value databases, Widecolumn stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive – Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 7. Big data applications and case study: Stock market analysis, weather data	L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
Unit –I 1. Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data. 2. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 7. Big data applications and case study: Stock market analysis, weather data	ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
1. Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data. 2. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 7. Big data applications and case study: Stock market analysis, weather data	Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs		
1. Different Types of Data. 2. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Widecolumn stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 7. Big data applications and case study: Stock market analysis, weather data			Unit –I			
Different Types of Data. 2. Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop, Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive – Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	1	Introduction: Data Analytic	cs, Data Analytics Life Cycle,	Big Data Characteristics,	4 hrs	
2. Hadoop , Spark 3. Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	1.	Different Types of Data.			7	
Hadoop , Spark Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases Unit –II Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). Big data applications and case study: Stock market analysis, weather data 4 hrs	2	Big Data Technologies: Parallel Data Processing, Distributed Data Processing,			8 hrs	
Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. 8 hrs Unit –III 6. Big Data Visualization: Hive – Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	2.	Hadoop , Spark			0 1113	
Column stores, Graph databases Unit –II 4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. 8 hrs Unit –III 6. Big Data Visualization: Hive – Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	3	Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-				
4. Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB — Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. 8 hrs Unit —III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	J.	column stores, Graph databases				
 Workloads, Processing in Batch Mode, Processing in Real-time Mode. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. Unit –III Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). Big data applications and case study: Stock market analysis, weather data 4 hrs 			Unit –II			
Workloads, Processing in Batch Mode, Processing in Real-time Mode. 5. MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. 8 hrs Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	4	Big Data Modeling: Data N	Nodel Structures, Data Mode	el Operations, Processing	8 hrs	
 MongoDB, MongoDB Query Language. Unit –III Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). Big data applications and case study: Stock market analysis, weather data 4 hrs 	7.	Workloads, Processing in B	atch Mode, Processing in Re	eal-time Mode.	0 1113	
MongoDB, MongoDB Query Language. Unit –III 6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs Big data applications and case study: Stock market analysis, weather data 4 hrs	5	MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in			2 hrs	
6. Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL). 4 hrs 4 hrs	٥.	MongoDB, MongoDB Quer	ry Language.		0 1113	
6. Format, Hive Query Language (HQL). 4 hrs Big data applications and case study: Stock market analysis, weather data 4 hrs		Unit –III				
Format, Hive Query Language (HQL). Big data applications and case study: Stock market analysis, weather data 4 hrs	6	Big Data Visualization: H	ive - Hive Architecture, Hi	ve Data Types, Hive File	4 hrs	
7. 4 hrs	0.	Format, Hive Query Langua	age (HQL).		4 1113	
analysis 4 iiis	7	Big data applications and	case study: Stock market	analysis, weather data	4 hrs	
5		analysis			4 1113	

Text Books:

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, Subhashini Chellappan, Big Data & Analytics, Wiley India Pvt Ltd 2014

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7	6	Solve Any 1 out of 2
111	Q.No8	7	Solve Ally 1 out of 2

BACK

Professional Electives – 1, 2 & 3

Prog	ram: Bachelor of Engin	eering				
	se Title: Signals & Syste		Course Code: 21ECSE31	3		
L-T-P	2: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	ζ		
ISA Marks: 50		ESA Marks: 50	Total Marks: 100			
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs			
		Unit –I				
	Chapter No. 01: Signa	l Representation				
	Definition of a signals	and systems, classification	of signals, (analog and			
	discrete signal, period	ic and aperiodic, determinis	tic and random signals,			
	even and odd sign	als, energy and power),	basic operation on			
1	signals(independent	variable, dependent vari	able , time scaling,	10		
	multiplication, time re	eversal), elementary signals	s (Impulse, step, ramp,	hrs		
	sinusoidal, complex	exponential), Systems In	nterconnections(series,	1113		
	parallel and cascade),	properties of linear systems	s. (homogeneity			
	ility, memory, causality)					
	Chapter No. 02: LTI Sy	stem Representation				
2	Impulse response	representation and pro	perties, Convolution,	10		
_	convolution sum and	convolution integral. Diffe	erential and difference	hrs		
equation Representation, Block diagram representation						
		Unit -II				
	-	er representation for signa				
3	-	time Fourier series (derivat	•	10		
	' '	Discrete Fourier transform (derivation of transform	hrs		
	excluded) and proper					
		cations of Fourier transforr				
4		cy response of LTI systems,		10		
	,	iodic signals, Fourier transfo	•	hrs		
	discrete time signals.	Sampling of continuous time	e signals.			
	Observation At the second	Unit –III				
	Chapter No. 05: Z-tra			40		
5		rm, Properties of ROC, Prop		10		
	`	Partial Fraction method, lon	g division method),	hrs		
Test	Unilateral Z-transform, Transform of LTI.					
	•	mentioned in the approved	•	2007		
	•	ry Van Veen , Signals and Sy	•			
۷.	Alan v Oppenneim ,A	lan S Willsky and S. Hamid	a mawab , Signais and S	ystems,		

Second, PHI public,1997

Reference Books:

- 1. H. P Hsu, R. Ranjan, Signals and Systems,; 2nd edition, McGraw Hill ,2017
- 2. Ganesh Rao and Satish Tunga, SignalsandSystems1st edition, Cengage India, 2017
- 3. M.J.Roberts, Fundamentals of Signals and Systems 2nd edition, McGraw Hill Education, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
'''	Q.No8	5	Solve Ally I out of Z

BACK

Prog	ram: Bachelor of Engineer	ing			
Cour	se Title: Fundamentals of	Image and Video Processing	Course Code: 21E	CSE312	
L-T-P	P: 2-0-1	Credits: 3	Contact Hrs: 4hrs	/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3	hrs	
		Unit –I			
	Introduction to Image ar	nd Video Processing			
1	Introduction, 2-dimensi	onal (2D) and 3-dimension	al (3D) signals,	4hrs	
	analog/digital dichotomy	, electromagnetic spectrum, a	nd applications.		
	Signals and Systems				
2	Fundamentals of 2D sign	nals and systems. Complex ex	ponential signals,	4 hrs	
_		stems, 2D convolution, and filte	ering in the spatial		
	domain.				
	Fourier Transform and S			_	
3		mpling, discrete Fourier transf	orm, and filtering	4 hrs	
	in the frequency domain				
	Motion Estimation				
4	Applications of motion estimation, phase correlation, block matching,				
	spatio-temporal gradient methods, and fundamentals of color image				
	processing.				
	Income Folkers and the second	Unit –II			
	Image Enhancement	formation biotocram muccoci			
5	•	sformation, histogram procession sharpening homomorphis	-	3 hrs	
)		, sharpening, homomorphic	intering, pseudo-	5 1115	
	coloring, and video enha	ncement.			
	Image Recovery				
		and video recovery, image re	storation matriy-		
	_	ges, inverse filtering, constrai	·		
		estoration approaches, itera			
6	algorithms, and spatially	• • •		5 hrs	
		er, Wiener noise smoothing	filter. maximum		
		a posteriori estimation, and Ba	,		
	algorithms.	,	,		
	Lossless and Lossy Comp	ression			
	Elements of information theory, Huffman coding, run-length coding and				
7	fax, arithmetic coding, die	ctionary techniques, and predic	tive coding. Scalar	5 hrs	
	and vector quantization,	differential pulse-code modula	tion, fractal image		
	compression, transform	coding, JPEG, and sub band ima	age compression.		

8	Video Compression Motion-compensated hybrid video encoding and video compression standards including H.261, H.263, H.264, H.265, MPEG-1, MPEG-2, and MPEG-4.	3 hrs
	Unit –III	
	Image and Video Segmentation	
9	Intensity discontinuity and intensity similarity, watersheds and K means	4 hrs
	algorithms, and other advanced methods.	
	Sparsity	
10	Sparsity-promoting norms, matching pursuit algorithm, smooth	4 hrs
	reformulations, and an overview of the applications.	

Text Books:

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 4th edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2018.
- 2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

Reference Books:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3	1, 2,3,4	Solve Any 2 out of 3
Ш	Q.No4, Q.No5, Q.No6	5,6,7,8	Solve Any 2 out of 3
III	Q.No7	9	Solve Any 1 out of 2
""	Q.No8	19	Solve Ally 1 out of 2

BACK

Prog	Program: Bachelor of Engineering					
	rse Title: Neural Network a		Course code: 21	FCSF314		
	P: 2-0-1	Credits: 3	Contact Hrs: 4 hr	_		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100)		
Teac	hing Hrs: 30 hrs	Practical:28 hrs	Exam Duration:	3 hrs		
		Unit-I				
1	Introduction to Deep Neural Network – 1					
	Convolution and pooling	, Activation functions, data p	rocessing, Batch	6hrs		
	Normalization, transfer le	earning, back propagation algo	rithms.			
2	2 Deep Neural Network – 2					
	Update rules, hyper parameter tuning, vs learning rate scheduling, data					
	augmentation Architectures: AlexNet, VGG, ResNet, MobileNet			8 hrs		
		Unit-II				
3	Deep Unsupervised Lear	ning				
	Autoencoders (standard	d, denoising, contractive e	etc), Variational	8 hrs		
	Autoencoders, Adversari	al Generative Networks, Adve	rsarial Examples			
	and attacks, Conditional	GAN, Super-Resolution GAN, C	ycleGAN			
4	Recurrent Neural Netwo	rks				
	Introduction, Long Shor	t-Term Memory Network, Im	plementation of	6 hrs		
	RNN & LSTM, Embedding	s & Word2vec, Sentiment Pred	diction RNN			
	Unit-III					
5	5 Improving Deep Neural Networks					
	Regularization, Mini-batch	n Gradient Descent, Hyperpa	rameter Tuning,			
	Batch Normalization and	Programming Frameworks				
Text	book:					

Text book:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, edition 3
- 2. Deep Learning with Python, Second Edition,
- 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili.

Reference book:

- 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006
- 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems, By Aurélien Géron , Publisher: O'Reilly Media, July 2016
- 3. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

List of experiments

Experiment	Brief description about the experiment	Number
No.		of slots
1.	Introduction to Neural networks training techniques.	2
2.	Designing the DNN model using transfer learning technique.	1
3.	Implementation of GAN:	1
	Experiment on Autoencoders and Variational Autoencoders	1
4.	Implementation of GAN:	
	Experiments on Conditional GAN, Super-Resolution GAN,	2
	CycleGAN	
5.	Implementation of RNN:	
	Implementation of RNN & LSTM and Embeddings &	1
	Word2vec	
6.	Experiments on Model Optimization Techniques: Hyper	1
	parameter tuning, Regularization and Optimization	1
7.	Course Project	4

BACK

Progra	am: Bachelor of Enginee	ring		
Course	e Title: Algorithmic Prob	lem Solving	Course Code: 17ECSE30	9
L-T-P:	0-0-6	Credits: 6	Contact Hrs: 12hrs/wee	k
ISA M	arks: 70	ESA Marks: 30	Total Marks: 100	
Teachi	ing Hrs:	Practical: 168 hrs	Exam Duration: 2-3 day	/S
		Unit –I		
	Building Blocks, Strateg	gies and Performance		
1	Understanding Coding I	Platforms and Tools, [Data Structures and Algorithms	12
1	Revisited, Warm up Problems, Parsing and Formatting Text, Code			hrs
	Performance Analysis a	nd Tools		
2	Advanced Data Structures			10
2	Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants			hrs
S	Dynamic Programming			8
3	Memory Functions, Optimization Problems			hrs
		Unit –II		
4	Graph algorithms			25
	Traversal Algorithms, S	hortest Path Algorith	ms, Spanning Tree Algorithms	hrs
	and Variants			3
5	Introduction to Compu	tational Geometry		5 hrs
Points, Line Segments, Polygons and		Polygons and Basics o	of Geometric Problems	3 1113
		Unit –III		
6	Chapter 6: Problem Sol	ving		14
<u> </u>	Assortment of Problem	s and Techniques		hrs

Text Books:

- 1. Levitin A., Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education, 2017.
- 2. Levitin A, Levitin M, Algorithmic Puzzles, First Edition, Oxford University Press, 2011.

References:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Third Edition, MIT Press, 2010.
- 2. HackerRank / CodeChef Platforms

BACK

Prog	ram: Bachelor of Enginee	ring		
Cour	se Title: Computer Vision		Course Code: 18ECSE301	L
L-T-P	P: 2-0-1	Credits: 3	Contact Hrs: 4hrs/week	
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	hing Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3 hrs	
		.Unit – I		
1	Introduction Computer Vision Overv Linear systems, Convolut		representation, Filters: ons; Lab: Basics, Filters	4hrs
2	Features and filtering Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and fitting: RANSAC Local features, Harris corner detection, Feature descriptors: Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges, Features			8hrs
		Unit – II		
3	segmentation; Clusterin	ngglomerative clustering g: K-means, Mean shif	g, Super pixels and over t; Visual Bag of Words: b: Resizing, clustering,	6 hrs
4	Motion Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for			6hrs
	•	Unit – III		
5	Advanced Techniques Image stitching, Image reduction, Face identification		ognition, Dimensionality by parts	6hrs

Reference Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.
- 2. D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India, 2nd Ed, 2015.
- 3. R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd Edition, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
III	Lab exam	5	Lab exam evaluation

BACK

Program: Bachelo	r of Enginee	ing			
Course Title: Sema	antic Web		Course Code: 19ECS	E303	
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/w	eek	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 h	nrs		Exam Duration: 03	hrs	
		Unit –I	_ I		
Introduction	Introduction to Semantics				
History of	History of the Web, Limitations, Vision of Semantic Web, Principles, Data		Web, Principles, Data		
1 Integration	Across Web	, Data Modeling Methods, Se	emantic Relationships,	4 hrs	
Metadata, Perpetual Data					
2 Expressing	Meaning			4 hrs	
Triple Store	Triple Store, Merging Graphs, Querying: Case Study			4 1113	
Using Sem	antic Data				
3 Query Lan	guage, Feed	Forward Inference, Search	ing for Connections,	8 hrs	
Linked Data	a, Freebase				
		Unit –II		T	
	ith Semantic				
	RDF—The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata			8 hrs	
	s, Ontology				
	and Social W				
		ximate Reasoning and Boun	ded Reasoning, Social	8 hrs	
Semantic V	Semantic Web, Semantic Crawlers				
		Unit -III		I	
Semantic N	Ü				
		mantic Web Applications, Lo	gic for Semantic Web,	8 hrs	
Case Studie	es: Dr. Watso	n, Yahoo! Search Monkey			

Text Books

- 1. Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Semantic Web Primer, MIT Press; 3rd edition, 2012.
- 2. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic Web: Build Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009.

Reference Books:

- 1. Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall; 1st edition, 2009.
- 2. Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011.
- 3. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	6	Solve Ally I

BACK

Progra	am: Bachelor of Engineering				
	e Title: Internet of Things		Course Code: 22ECSE	303	
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/w	eek	
ISA M	arks: 50	ESA Marks: 50	Total Marks:		
Teach	ing Hrs: 40		Exam Duration: 3 hr	s	
		Unit –I	I		
	Introduction to Internet of	Things (IoT)		0.4	
1	Definition & Characteristics	of IoT, Things in IoT, IoT pro	tocols, IoT functional	04	
	blocks, communication models and APIs, IoT Levels.			hrs	
	IoT Architecture				
_	Enabling technologies: Sens	ors, Zigbee, Bluetooth/BLE	, IoT ecosystem, Data	04	
2	Link protocols: IEEE 802.15	.4e, IEEE 802.11.ah, DASI	17, Low Power Wide	hrs	
	Area Network (LPWAN), LTE	-m, NB-IoT, LoRa, Z-Wave.			
	Network protocols				
	Routing Protocol for Low-P	ower and Lossy Networks	(RPL), cognitive RPL	04	
3	(CORPL), Channel-Aware R	outing Protocol (CARP), I	ow power Wireless	hrs	
	Personal Area Networks (LoWPAN), IPV6, 6LoWPAN, Route-Over & Mesh-			nrs	
	Under techniques.				
		Unit –II			
	Application and Security protocols				
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks,			03	
4	Secure MQTT, Advanced Message Queuing Protocol (AMQP), Constrained			hrs	
	Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-			1113	
	Power and Lossy Networks (RPL), TLS/DTLS.				
	Design Methodology and	d Identity Management	Solutions for IoT		
	Platforms				
5	IoT Design Methodology, Ca	se Study on IoT System for	Weather Monitoring	05	
	etc., Basic building blocks of an IoT device, Raspberry Pi, IoT Operating			hrs	
	Systems: Contiki, RIOT, ARM Mbed OS. IoT IAM infrastructure –				
	Authorization with Publish ,	Subscribe schemes			
	Programming with Raspbe	•	(CC3200/ESP8266) &	04	
6	6LoWPAN Controller (CC26	•		hrs	
	XML, JSON, SOAP and REST-	<u> </u>	et protocol.		
	T	Unit –III	Т		
	IoT prototyping				
	Business models, example a			06	
7	Smart Cities, Environment, Energy, Agriculture, Health, Retail with emphasis		-	hrs	
	on data analytics and secu	rity. Industrial IoT (IIoT).	Role of AI/ML in IoT		
	(AloT).				

Text Books (List of books as mentioned in the approved syllabus)

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.
- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014
- 3. Drew Van Duren, Brian Russell "Practical Internet of Things Security" Second Edition, Packt Publishing November 2018.

References

- 1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.
- 2. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", Wiley 2009.

BACK

	am: Bachelor of Engineer	III'B			
Cours	e Title: Multimedia Netw	orking	Course Code:21ECSE31	1	
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/weel	k	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 40 hrs		Exam Duration: 3 hrs		
		Unit –I			
	Introduction to Multi m	nedia			
1	Media and Data strea	m: Perception Media,	Representation Media,	4 hrs	
-	Presentation Media, S	torage Media; Key proլ	perties of Multimedia,	71113	
	Characterizing data stre	ams and Continuous Med	lia Data Streams.		
	Graphics and Image Da	ta representation			
	Graphics / Image data	types, popular file forma	its, color science, color		
2	models in images, color	models in video, Image	analysis: Color, Texture	6 hrs	
_	identification, Edge d	etection using sobel o	perators, canny edge	0 1113	
	detection method, Image segmentation: pixel oriented, edge oriented,				
	Region oriented, Image recognition. Image synthesis, Radon transforms.				
	Fundamental concepts of Video and Audio				
3	Types of video signal, digital video, Digitization of audio, MIDI standard,				
	Quantization and transmission of audio				
	T	Unit –II			
	Image compression tec	-			
	·	algorithms: Run-Length (<u> </u>		
		n–Fano Algorithm, Huff			
	Huffman Coding, Arithmetic Coding, Lossless JPEG, Lossy compression			C has	
4	algorithms: Distortion Measures, The Rate-Distortion Theory, Quantization, Uniform Scalar Quantization, Non-uniform Scalar			6 hrs	
	,	,			
	Quantization, Vector Quantization, Transform Coding, Discrete Cosine Transform (DCT), Introduction, Continuous Wavelet Transform, Discrete				
	Wavelet Transform	action, continuous wave	det fransionii, biscrete		
	Video compression tecl	niques.			
5	-	ed on motion compensation	on, H.261. H.263. MPFG	6 hrs	
	-1. Basic audio compres	•	, = = , = = ,	••	
	Computer based Anima				
6	Basic concepts, specifications of animations, methods of controlling			4 hrs	
		smission of animation, VF	_		
	1	Unit –III		<u> </u>	
_	Optical storage media			A 1.	
7	Basic technology, video disc, CDDA, CDROM, CDR/W, DVD		4 hrs		
8	Content Analysis			4 hrs	

Simple and complex features: text recognition, similarity based search in image database, analysis of individual images, image sequences, applications.

Text Books:

- 1. Ze-Nian Li & Mark S.Drew, Jiangchuan Liu, "Fundamentals of Multimedia", Second Edition, Springer, 2014.
- 2. Ralf Steinmetz, Klara Narstedt, "Multimedia Fundamentals: Vol 1-Media Coding and Content Processing", 2nd Edition, Pearson Education / PHI, 2003.

Reference Books:

1. James E Shuman, "Multimedia in Action" 2nd Indian reprint 2008, Cengage learning.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
111	Q.No7	7	Salva Any 1
III	Q.No8	8	Solve Any 1

BACK

Prog	gram: Bachelor of Engineer	ing		
Cour	rse Title: Data Integration	and Cloud Services	Course code: 21ECS	E331
L-T-P	P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/v	veek
ISA I	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	hing Hrs:	Practical : 84 hrs	Exam Duration: 3 h	rs
1	Sources, and Targets, D Database Joins in Powe Sorting Data, Command	evelopers: Introduction to Po esign Objects, File Lookups, rCenter, Workflow Logic, Me d Tasks, Debugging, Paramet ts, Mapping Design Workshop	Relational Lookups, erging, Routing, and terization, Updating	20 hrs
2	PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning.			20 hrs
3	Cloud Application Integ Integration, Understand to Adding Web Services to	ration Services: Overview on the Basics: Process Designer, Van Process, Fault Handling, Intent, CAI and CDI Integration, Total	Norking with Assets, roduction to Guides	10 hrs
4	Environments and Coni Designer, Cloud Mapping Expression Macro and E	Services: Informatica Cloud nections, Synchronization Tar Designer – Transformations, N Dynamic Linking, Replication ask flows, Hierarchical Con	sk, Cloud Mapping Mapping Parameters, Task, Masking Task,	10 hrs

Text book:

1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar, Publisher: Packt, 2017.

Reference book:

1. Data Mining Concepts and Techniques, Third Edition, Jiawei Han, Micheline Kamber, Jian Pei, Publisher: Elsevier, 2012.

BACK

Prog	ram: Bachelor of Eng	ineering			
Cour	se Title: DevOps		Course Code: 21ECSE310		
L-T-P	2: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100		
Teacl	hing Hrs:	Practical: 84 hrs	Exam Duration: 3 hrs		
		Unit –I			
	Introduction to Dev	Ops and Continuous Del	ivery		
1	Introducing DevOp	s, The Agile wheel of	wheels, DevOps and ITIL,	4hrs	
	Infrastructure As A Code, Continuous Integration and Development.				
	Linux and Automati	ion			
2			Networking, Shell Variable,	4hrs	
		shell test conditions, Sh	ell loops, Re-directors, Exit		
	status.				
	AWS Cloud	d L' C ANAC D-	.' 0 A7/- ECO EDC EEC		
3	Introduction to cloud computing & AWS, Regions & AZ's, EC2, EBS, EFS, Auto scaling, Load balancing & Route 53, VPC, Object storage(S3), IAM &			6hrs	
	Monitoring(Cloudwatch), Database Services, AWS Lambda & CLI Unit –II				
	Version Control wit				
			view Creating null request		
4	SCM, Git branching and merging, Git Overview, Creating pull request, Code Review, Merging changes, Create a repo and push code on GibHub /				
	Bitbucket	and an angles, as a see a seep	, , ,		
	Continues Integration	on using Jenkins			
	Introduction, Setup & Launch Jenkins, Creating first job, Notifications,				
5	CICD pipeline, Build Pipeline plugin in Jenkins, Scheduling a job using cron				
	tab, Scheduling a job using Poll SCM, Distributed Architecture in Jenkins,				
	Adding linux slave to jenkins master				
	Configuration Mana	agement using Ansible			
6	Introduction, Local infrastructure development, Ad-Hoc commands,				
		ks organization – Roles & I	ncludes, Inventories, Ansible	7hrs	
	for AWS				
Unit –III					
	Containers	on Combations Manager	Analisa Darlarda (U.)		
_	•		Machine, Docker installation,	Ch	
7			s, Building your own docker	6hrs	
			ocker Hub, Networking inside		
8	single docker contai	ng using Prometheus and	l Grafana	4 hrs	
U	Continues Moniton	ing daning rittinicus dill	Jiaiaila	7 1113	

What is continues monitoring, Goals, Types of Continues monitoring, Prometheus installation, Grafana installation, Integration of Prometheus and Grafana, Adding customised dashboard in Grafana, Introduction to node exporter, Integrating node exporter for monitoring, Monitoring docker and containers

Text Books:

- 1. Joakim Verona, "Practical DevOps." Packt Publishing Ltd, Feb. 2016, ISBN: 9781785882876
- 2. Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans." Leanpub, 2015.
- 3. John Ferguson, "Jenkins: The Definitive Guide" Smart Publisher: O'Reilly Media, Release Date: June 2016.

Reference Books:

- 1. Jennifer Davis, Ryn Daniels, "Effective DevOps, Building a Culture of Collaboration, Affinity, and Tooling at Scale", Publisher: O'Reilly Media, Release Date: June 2016.
- 2. Gene Kim, Patrick Debois, John Willis, Jez Humble, "The DevOps Handbook: How to Create World-Class Speed, Reliability, and Security in Technology Organizations", IT Revolution Press, 2016.

BACK

Progr	am: Bachelor of Engineer	ring		
Cours	se Title: Parallel Computir	ng	Course Code: 17EC	SE307
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 03 hrs	s/week
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40 hrs.		Exam Duration: 03	hrs
		Unit –I		
	Introduction to Paralle	el Computing & Parallel Pro	gramming Platforms	
	Motivating Parallelism,	Scope of Parallel Computing	g, Implicit Parallelism:	
1	Trends in Microprocess	or Architectures, Limitation	s of Memory System	8 hrs
1	Performance, Dichotor	my of Parallel Computing	Platforms, Physical	0 1113
	Organization of Paralle	el Platforms, Communicati	on Costs in Parallel	
	Machines.			
	Principles of Parallel Al	gorithm Design		
2	Preliminaries, Decompo	osition Techniques, Charact	eristics of Tasks and	8 hrs
2	Interactions, Mapping	Techniques for Load Bala	ancing, Methods for	0 1113
	Containing Interaction (Overheads, Parallel Algorith	m Models.	
		Unit –II		
	Analytical Modeling of Parallel Programs			
	Sources of Overhead in Parallel Programs, Performance metrics for			
3	parallel systems, The effect of Granularity on performance, Scalability of			8 hrs
•	Parallel Systems, Minimum execution time and minimum cost optimal			0 1113
	execution time, Asymptotic analysis of Parallel programs, Other			
	Scalability Metrics.			
		e Message Passing Paradig		
	Principles of Message -	- Passing Programming, The	Building Blocks, and	
4		sing Interface, Overlapping		8 hrs
	Computation, Collective Communication and Computation Operations,			
	Groups & Communicato			
	1	Unit –III		
	Pthreads and Synchron	nization		
5	Thread Basics, POSIX Th	read API, Synchronization P	rimitives in Pthreads,	4 hrs
•	Controlling Thread and	Synchronization Attributes,	Thread Cancellation,	
	Composite Synchroniza	tion Constructs.		
	OpenMP			
	Open MP programm	, , , ,	•	
6	<u> </u>	ucts in opn MP, Data handli		4 hrs
	_	nvironment variables in Ope	enMP, Explicit Thread	
	versus OpenMP based p	orogramming.		

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

Reference Books:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
'''	Q.No8	5	Solve Ally I

BACK

Progra	am: Bachelor of Enginee	ring		
Cours	e Title: Quantum Compu	ıting	Course Code: 17ECSE	306
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40 hrs		Exam Duration: 3hrs	
		Unit –I		
	Introduction and Backg	ground:		
	Overview, Computers and the Strong Church–Turing Thesis, The Circuit		ng Thesis, The Circuit	
1	Model of Computation	n, A Linear Algebra Formu	lation of the Circuit	6 hrs
	Model, Reversible Co	mputation, A Preview of	f Quantum Physics,	
	Quantum Physics and C	Computation		
	Linear Algebra and the	Dirac Notation:		
2	The Dirac Notation an	d Hilbert Spaces, Dual Vec	tors, Operators, The	6 hrs
_	Spectral Theorem, Functions of Operators, Tensor Products, The Schmidt			0 1113
	Decomposition Theorem, Some Comments on the Dirac Notation			
3	Introduction to Quantum Toolbox in Python:			4 hrs
	Installation, Basics and Quantum mechanics			71113
		Unit –II		
	Qubits and the Framework of Quantum Mechanics:			
4	The State of a Quantu	ım System, Time-Evolution	of a Closed System,	6 hrs
	Composite Systems, Measurement, Mixed States and General Quantum			0 15
	•	es, Partial Trace, General Qu	antum Operations	
	A Quantum Model of C	•		
		lodel, Quantum Gates, 1-Qu		
5		s of Quantum Gates, Efficier		6 hrs
	•	ns, Implementing Measuren	nents with Quantum	
	Circuits			
6		Solving Problems / Proje	ects using Quantum	4 hrs
	Computing.			
		Unit –III		
_	Introductory Quantum	_		
7		antum Algorithms, Phase Ki		4 hrs
		ı–Jozsa Algorithm, Simon's A	lgorithm	
8	_	cts done during the course:		4 hrs
	image processing, Data	Sciences, Machine Learning	, Networking	

Text Books

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	301VE ATTY I

BACK

Program: Bachelor of Engineering							
Course Title: Embedded Intelligent Systems		Course code: 18ECSE302					
L-T-P: 0-0-3		Credits: 3	Contact Hrs: 6hrs/week				
ISA Marks: 80		ESA Marks: 20	Total Marks: 100				
Teaching Hrs:		Practical: 84 hrs	Exam Duration: 3 hrs				
	Basics of embedded syst	ems					
	Linux Application Programming, System V IPC, Linux Kernel Internals and						
1	Architecture , Kernel Cor	e, Linux Device Driver Program	mming, Interrupts &	10 hrs			
	Timers ,Sample shell script, application program, driver source build and						
	execute						
	Heterogeneous computing						
	Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b. GPU programming (OpenCL) c. Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution						
2							
	ML Frameworks lab with the target device						
	Caffe, tensorflow, TF Lit	te machine learning framewo	orks & architecture,				
3	Modelparsing, feature su	pport and flexibility, Supporte	d layers, advantages	16hrs			
	and disadvantages with e	each of these frameworks, And	roid NN architecture				
	overview, Full stack comp	pilation and execution on emb	edded device				
	Model Development and	d Optimization					
	Significance of on dev	ice AI, Quantization, prunir	ng, weight sharing,				
4	Distillation, Various pre-	-trained networks and desig	n considerations to	8hrs			
	choose a particular pr	e-trained model, Federated	Learning, Flexible				
	Inferencing						
	Android Anatomy						
5		ux Kernel , Binder , HAL Nativ	•	8hrs			
	Runtime, Dalvik Applicati	ion framework , Applications, I	PC				

Text Books

- 1. Linux System Programming, by Robert Love, Copyright © 2007 O'Reilly Media
- 2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann

Reference Books:

- 1. Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's
- 2. Beginning Android, by Wei-Meng Lee, Publisher: Wrox, O'Reilly Media

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set	Chapter	Instructions	
	of 10 Marks Each	Numbers		
1	Project Examination	1,2,3,4,5	Project implementation and	
			demonstration	
			20 marks	

BACK

Program: Bachelor of Engineering							
Course Title: The ARM Archit	Coursecode:19ECSE30)2					
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4 hrs/week					
ISA Marks: 50	ESA Marks: 50	Total Marks: 100					
Teaching Hrs: 30 hrs	Tutorial: 28 hrs	Exam Duration: 3 hrs					
	Unit –I						
ARM Embedded System	ARM Embedded Systems and Processor Fundamentals						
The RISC Design Philoso	The RISC Design Philosophy , The ARM Design Philosophy, Embedded System						
1 Hardware, Embedded S	Hardware, Embedded System Software, Registers, Current Program Status						
Register, Pipeline, Exc	Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core						
Extensions, Architecture	Extensions, Architecture Revisions, ARM Processor Families						
Introduction to the ARI	M Instruction Set & Assembly	Programming					
Data Processing Instruc	Data Processing Instructions, Branch Instructions, Load-Store Instructions,						
2 Software Interrupt In	Software Interrupt Instruction, Program Status Register Instructions,						
Loading Constants, AF	Loading Constants, ARMv5E Extensions, Conditional Execution, Thumb						
instruction set.	instruction set.						
	Unit -II						
	Efficient C Programming						
·	Overview of C Compilers and Optimization, Basic C Data Types, C Looping						
_	Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure						
	Arrangement, Bit-fields,						
	Unaligned Data and Endianness, Division.						
	Writing and Optimizing ARM Assembly Code						
4	Writing Assembly Code, Profiling and Cycle Counting, Instruction						
	Scheduling, Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation, Efficient Switches, Handling Unaligned Data.						
Bit Manipulation, Efficie		ed Data.					
Introduction to LDC 31	Unit –III						
Introduction to LPC-214 5 Input output Ports, P		tout coloct registers	03				
i i	Input output Ports, Pin select registers, Input output select registers,						
ARM Interfacing	direction control and control registers, Introduction to interfacing standards						
	ARM interfacing to peripherals like LED, LCD, Seven segments, Motors,						
Converters, Keypad.							
Text Books:							
1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing							
System Software							

Reference Books:

- 1. Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2. Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./ Job No.	Assignments/experiment	No. of Lab. Slots per batch (estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for	01
-	displaying message.	
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and	01
,	direction	
8	Interface DAC to ARM controller	01

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

BACK

Program: Bachelor of Engineering				
	e Title: Robotic Process A			
Devel	opment		Course Code:20ECS	SE301
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/v	week
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100	
Teach	ing Hrs: 40 hrs		Exam Duration: 3 h	ırs
		Unit –I		
	Programming Basics & Recap –			
	Programming Concepts	Basics - Understanding the	application - Basic	6 hrs
1	Web Concepts - Protoco	ols - Email Clients Data Struc	ctures - Data Tables	
_	- Algorithms - Software	e Processes - Software Desig	n - ScriptingNet	
	FrameworkNet Funda	amentals - XML - Control struc	tures and functions	
	- XML - HTML - CSS - Va	riables & Arguments.		
	Rpa Concepts -RPA Basi	ics - History of Automation - V	Vhat is RPA - RPA vs	
	Automation - Processes	& Flowcharts - Programming	Constructs in RPA -	
		Automated - Types of Bots - W		
2		vanced Concepts - Standardiz	·	10 hrs
	•	dologies - Difference from SD		
	flow architecture - RPA business case - RPA Team - Proccess Design			
	Document/Solution Design Document - Industries best suited for RPA -			
	Risks & Challenges with	RPA - RPA and emerging ecos	system.	
Unit –II				
	•	& Basics - Introduction to R		
		Managing Variables - Naming I		
		ic Value Variables - Text Varia		
	Variables - Number Variables - Array Variables - Date and Time Variables			
		- Data Table Variables - Managing Arguments - Naming Best Practices -		
	_	Using Arguments - About Imp		
3		spaces- Control Flow - Control		8 hrs
		Loops - Advanced Control F	·	
		ntrol Flow - Control Flow Act	_	
		vity - The Do While Activity -	•	
	•	hile Activity - The For Each A	•	
	Activity - Data Manipulation - Data Manipulation Introduction - Scalar variables, collections and Tables - Text Manipulation - Data Manipulation			
	·	·	Data Manipulation	
	- Gathering and Assemb		- Recording and	
	Advanced Automation Concepts And Techniques – Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop			
4		ding - Input/Output Methods		8 hrs
4		ung - mput/Output Methods ng advanced techniques - Sel		0 1113
		Selectors - Customization - De		
	Demining and Assessing	Sciencia Customization - De	- Dynamic	

Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced
Citrix Automation - Introduction to Image & Text Automation - Image
based automation - Keyboard based automation - Information Retrieval
- Advanced Citrix Automation challenges - Best Practices - Using tab for
Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA -
Excel and Data Table basics - Data Manipulation in excel - Extracting Data
from PDF - Extracting a single piece of data - Anchors - Using anchors in
PDF.

Unit -III

Email Automation & Exceptional Handling — Email Automation - Email

Automation - Incoming Email automation - Sending Email automation
Debugging and Exception Handling - Debugging Tools - Strategies for solving issues - Catching errors.

8 hrs

Text Books:

1. Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt Publishing

Release Date: March 2018 ISBN: 9781788470940

Reference Books:

- 1. Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation.
- 2. Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant
- 3. Srikanth Merianda, Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation
- 4. https://www.uipath.com/rpa/robotic-process-automation

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
""	Q.No8	5	Solve Ally 1

BACK

Professional Electives - 4, 5 & 6

Coui	ram: Bachelor of Engineerin		Course Code: 18ECS	E402
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/v	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	aching Hrs: 40 hrs Exam Duration: 03 h		hrs	
		Unit –I		
	Introduction			
1.	Introduction : Motivation, o	lifferent sources of network	data, types of networks,	6 hrs
	tools for visualizing networ	k data.		
	Structural properties of ne	tworks		
_	Structural properties of r	etworks : Notions of cen	trality, cohesiveness of	10
2.	subgroups, roles and positions, structural equivalence, equitable partitions,			hrs
	stochastic block models.			
	l	Unit –II		ı
	Cascading properties of ne	tworks		
3.	Cascading properties of networks: Information/influence diffusion on networks,			10
3.	maximizing influence spread, power law and heavy tail distributions, preferential			
	attachment models.			hrs
	Small world phenomenon			
	Small world phenomenon : Six Degrees of Separation, Structure and			
4.	Randomness, Decentralized Search, Empirical Analysis and Generalized Models,			6 hrs
	Core-Periphery Structures and Difficulties in Decentralized Search, Advanced			
	Material: Analysis of Decentralized Search.			
Unit –III				
5.	Mining Graphs- I			4 hrs
J.	Mining Graphs- I: Community and cluster detection: random walks.			71113
6.	Mining Graphs- II			4 hrs
٥.	Mining Graphs- II: Spectral	methods; link analysis for w	reb mining.	7 1113

Text Books:

- 1. Stanley Wasserman, Katherine Faust, Social network analysis: methods and applications, Cambridge University Press, 1994.
- 2. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World., Cambridge University Press, 2010.

Reference Books:

- 1. Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Oxford University Press, 2003.
- 2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions	
	Marks Each	numbers		
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3	
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3	
III	Q.No7	5	Solve Any 1 out of 2	
""	Q.No8	6	Solve Ally 1 out of 2	

BACK

Prog	Program: Bachelor of Engineering				
Cour	Course Title: Natural Language Processing Course Code: 22ECSE40				
L-T-P: 2-0-1 Credits: 3		Credits: 3	Contact Hrs: 04 hrs/we	ek	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3 hrs		
		Unit –I			
1.	Introduction to NLP a	nd Deep Learning		5 hrs	
	Introduction to Nat	ural Language Processing, A _l	oplications of Natural		
	Language Processing,	Word2vec introduction, Word2	2vec objective function		
	gradients				
2.	Dependency Parsing,	Recurrent Neural Networks		7 hrs	
	Dependency Grammar , Neural dependency parsing, Recurrent Neural				
	Networks and Language Models, Vanishing Gradients, Fancy RNNs				
		Unit –II			
3.	Machine Translation,	Seq2Seq and Attention		6 hrs	
	Machine Translation, S	Seq2Seq and Attention, Advance	ed Attention		
4.	Transformer Network	s, Coreference Resolution, Mer	nory Networks	6 hrs	
	Transformer Network	s and CNNs, Tree Recursive	Neural Networks and		
	Constituency Parsing , Advanced Architectures and Memory Networks				
Unit –III					
5.	5. Reinforcement Learning			6 hrs	
Reinforcement Learning for NLP, Semi-supervised Learning for NLP, Future of					
	NLP Models, Multi-tas	k Learning and QA Systems			
Tout Books					

1. Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing, 2016

Reference Books:

- 1. Dan Jurafsky and James H. Martin. Speech and Language Processing 3Ed. Draft.
- 2. Ian Goodfellow, YoshuaBengio, and Aaron Courville. *Deep Learning*. MIT Press.

List of experiments

Expt./Job	Brief description about the experiments	No. of Lab slots
No.	brief description about the experiments	per batch (2hrs)
1.	Installation of nltk tool kit in python and practicing of word	1
	tokenization, spellchecker programs.	
2.	Compute softmax points (probabilities) for numerical	1
	stability.	
3.	Implement the word2vec model for word vector	1
	representation.	
4.	Implement the dependency parsing for the following	2
	sentence "I parsed this sentence correctly" and show at	
	least three steps for parsing with stack and buffer status.	
5.	Write a program to build seq2seq sentence from word	1
	corpora (Tensorflow).	
6.	Implement the neural image caption generator.	2
7.	Implement question answering (QA) system, to answer	1
	the questions posed in natural language.	

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7	6	Solve Any 1
111	Q.No8		Solve Ally 1

BACK

Pro	gram: Bachelor of Engineerir	g			
Course Title: Fuzzy Set Theory Course Code:19ECSE					
L-T-	L-T-P:3-0-0 Credits: 3 Contact Hrs: 3 hrs/v			veek	
ISA	Marks: 50 ESA Marks: 50 Total Marks: 100				
Tea	ching hrs: 40 hrs		Exam Duration: 3 hr	'S	
		Unit –I			
1.	Introduction : Introduction	o Fuzzy Logic, Fuzzy Membersh	ip Functions,	8 hrs	
	Operations on Fuzzy Sets				
2.	Fuzzy Measures: Fuzzy Rela	tions, Fuzzy Proposition, Fuzzy I	mplications, Fuzzy	8 hrs	
	Inferences				
		Unit –II			
3.	Fuzzy Relations and Fuzzy Graphs: Fuzzy Relations, Compositions of Fuzzy			8 hrs	
	Relations, Properties of the Min-Max Composition, Defuzzificatin Techniques,				
	Lambda-cut method, Weigh	ted average method, Maxima m	ethods, Centroid		
	methods, Output of a Fuzzy	System			
4.	Uncertainty Modeling: App	ication-oriented Modeling of U	ncertainty, Causes of	8 hrs	
	Uncertainty, Uncertainty M	ethods, Possibility Theory			
		Unit-III			
5.	Fuzzy Data Bases and Queries: Introduction, Fuzzy Relational Databases, Fuzzy			4 hrs	
	Queries in Crisp Databases				
6.	Fuzzy Sets and Expert Systems: Introduction to Expert Systems, Uncertainty			4 hrs	
	Modeling in Expert Systems	Applications			

- 1. H. J. Zimmermann, Fuzzy Set Theory-and Its Applications, Fourth Edition, 4th Ed., Springer Science Business Media, LLC , 2001
- 2. Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic,2nd ed. Vivo Books pvt ltd , 2015

Reference Books:

- 1. Timothy J. Ross, Fuzzy Logic with Engineering Applications, 3ed., 2010, A John Wiley and Sons, Ltd., Publication
- 2. Kumar S. Ray, Soft Computing and Its Applications: Fuzzy Reasoning and Fuzzy Control, 1st Edition, Apple Academic Press 2014
- 3. Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, Elesvier Press, 2004.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7	5	Solve Any 1
'''	Q.No8	6	Solve Ally 1

BACK

Program: Bachelor of Engineering					
	ge Processing(NPTEL-SWAYAM)	Course Code: 22ECSE451			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 weeks			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs			
	Content				
Week 1: Introduction and Ba	sic Text Processing				
Week 2: Spelling Correction,	Language Modeling				
Week 3: Advanced smoothin	g for language modeling, POS tag	gging			
Week 4: Models for Sequent	ial tagging – MaxEnt, CRF				
Week 5: Syntax – Constituen	Week 5: Syntax – Constituency Parsing				
Week 6: Dependency Parsing	7				
Week 7: Distributional Sema	ntics				
Week 8: Lexical Semantics					
Week 9: Topic Models					
Week 10: Entity Linking, Infor	mation Extraction				
Week 11: Text Summarization	, Text Classification				
Week 12: Sentiment Analysis	Week 12: Sentiment Analysis and Opinion Mining				
Course registration link: https://onlinecourses.nptel.ac.in/noc21 cs102					
Resource Person : Prof. Pawa	an Goyal IIT Kharagpur				

Books and references

2. Dan Jurafsky and James Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall, Second Edition, 2009.

Some draft chapters of the third edition are available

online: https://web.stanford.edu/~jurafsky/slp3/

3. Chris Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA: May 1999

Evaluation Scheme

Exam will be conducted by SWAYAM and passing criteria is as follows:

Pass criteria

- The weekly assignments are all graded out of 100 marks.
- For the 4/8/12 week courses, normally best 3/6/8 assignments are considered for calculating the Average assignment score (out of 100).
- Final score = 25% of Average assignment score (out of 100) + 75% of proctored certification exam score (out of 100)
- Learner is said to be certified in the course and he/she will be eligible for the e-certificate IF Average assignment score >= 40/100 AND Proctored certification exam score >= 40/100
- e-copy of the course certificate will be given to students which displays the name, roll number, photo, assignment marks, exam marks and total marks of the candidate
- The e-certificate will have the signatures of the NPTEL coordinator, the Head of the Centre for Education in the corresponding institute to which the Course instructor belongs along with the logo of the institute.
- The e-certificate also carries the QR code, on scanning which, the original certificate hosted on NPTEL server will be accessible. This way any one presented with the e-copy can verify against the original hard copies of the certificates can be printed by the learner on downloading the e-copy of the certificate.

BACK

Prog	gram: Bachelor of E	ngineering		
Cou	rse Title: Advanced	Computer Graphics	Course Code: 22E	CSE433
L-T-F	L-T-P: 0-0-3 Credits: 3 Contact Hrs: 6hrs		/week	
ISA I	Marks: 100 ESA Marks: 00 Total Marks: 100			
Teac	hing Hrs:	Practical: 84 hrs	Exam Duration: -	NA-
		*No Units	<u> </u>	
1.	Review of Rasteriz	ation and Ray tracing		3 hrs
2.	2. Rendering acceleration data structures		3 hrs	
3.	3. Applications of Texture mapping		3 hrs	
4.	4. Physically based lighting models, global illumination		3 hrs	
5.	5. Multi-pass shading techniques		6 hrs	
6.	Surface design and	d representation (Implicit an	d Parametric forms)	3 hrs
7.	7. Mesh Parameterization		6 hrs	
8.	. Mesh simplification			3 hrs
9.	Animation			3 hrs
10.	Virtual world desig	gn		6 hrs
11.	Volume rendering			3 hrs

Reference Material:

- 1. Peter Shirley, Fundamentals of Computer Graphics, 2009, A. K. Peters
- 2. Tomas Akenine-Moller, Eric Haines, and Naty Hoffman, Real-Time Rendering, 2008, A.K. Peters.
- 3. Henrik Wann Jensen, Realistic Image Synthesis Using Photon Mapping, 2001, A.K. Peters.
- 4. Watt A. and M. Watt, Advanced Animation and Rendering Techniques Theory and Practice, 1994, Addison-Wesley.
- 5. Foley, J.D., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, ISBN 0-201-12110-7. (Errata)
- 6. Neider, J., T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley, ISBN 0-201-63274-8.
- 7. Blinn J., A Trip Down the Graphics Pipeline. Jim Blinn's Corner, Morgan Kaufmann.
- 8. Luebke D., M. Reddy, J. Cohen, A. Varshney, B. Watson, R. Huebner, Level of Detail for 3D Graphics, 2003, Morgan-Kaufman.
- 9. Ebert D., F. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A Procedural Approach 2e AP Professional.
- 10. Parent, R., Computer Animation: Algorithms and Techniques Morgan Kaufmann.
- 11. Hoffman, C. Geometric and Solide Modeling Morgan Kaufmann.
- 12. Graphics Gems I-V, AP Professional.
- 13. Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory To Implementation.
- 14. Bretscher, O., Linear Algebra with Applications 2e Prentice Hall.

Scheme for End Semester Assessment (ESA): No ESA for the course

*Content and reference material as shared by IIT Delhi Professor

BACK

Prog	Program: Bachelor of Engineering				
Cou	Course Title: Advanced Computer Vision Course Code: 22ECSE434				
L-T-F	L-T-P: 0-0-3 Credits: 3 Contact Hrs: 3 hrs/w			ek	
ISA I	Marks: 100	ESA Marks: 00	Total Marks: 100		
Teac	Teaching Hrs: Practical:84 hrs Exam Duration: -NA-				
		*No Units			
1.	Basics of Machine Lea	rning, and Convolutional No	eural Networks	1.5 hrs	
2.	Optimization strategie	s for training deep neural n	etworks	1.5 hrs	
3.	Advanced Architecture	es for Image Classification		3 hrs	
	(VGGNet, InceptionNet, ResNet, DenseNet, MobileNets etc.)				
4.	Techniques for Visualizing CNNs for Image Analysis			3 hrs	
5.	Traditional Techniques for Object Detection			3 hrs	
	(Viola-Jones, Parts based models etc.)				
6.	Modern Techniques for Object Detection			4.5 hrs	
	(Single shot and two shot detectors, keypoint based detectors)				
7.	Traditional Techniques for Image Segmentation			3 hrs	
8.	Modern Techniques for Image Segmentation			4.5 hrs	
9.	Generating Synthetic I	mages (AR models, VAEs ar	nd GANs)	4.5 hrs	
10.	D. Vision and Language			4.5 hrs	
11.	Learning Models for Geometrical Vision Problems		5	3 hrs	
12.	Object Tracking			3 hrs	
13.	Attack and defense ted	chniques for computer visio	on systems	3 hrs	

Reference Material:

- 1. Forsyth and Ponce, Computer Vision: A Modern Approach, Published by Pearson, 2012
- 2. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 3. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

Scheme for End Semester Assessment (ESA): No ESA for the course

*Content and reference material as shared by IIT Delhi Professor

BACK

	gram: Bachelor of Engir	leering			
Course Title: Unix Network Programming Course Code: 18ESCE4			104		
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/w	veek	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	aching Hrs: 40 hrs Exam Duration: 3 hrs				
		Unit –I			
	Communication Proto	ocols			
1.	Introduction TCP/IP -	Internet Protocols XNS SNA	NetBIOS UUCP Protocol	5 hrs	
	comparisons.				
	Elementary Socket Pr	ogramming			
2.	Introduction Overviev	V UNIX Domain Protocols Soc	ket Addresses Elementary	5 hrs	
	Socket system calls A simple example.				
	Advanced Socket Pro	gramming			
	Advanced Socket System calls Reserved Ports Stream Pipes Passing file				
3.	descriptors Socket options Asynchronous I/O Input/output Multiplexing Out-				
	of-Band Data Sockets and Signals Internet Super server Socket				
	implementation.				
		Unit –II			
4.	Time and Date Routin	ies		5 hrs	
-7.	Introduction Internet	Time and Date Client Networ	k Time Synchronization.	כווו כ	
5.	Ping Routines			5 hrs	
J.	Introduction Internet	Ping Client XNS Echo Client.		3 1113	
	Trivial File Transfer Pr	otocol			
	Introduction Protocol Data Formats Connections Client user interface UDP			6 hrs	
6.	implementation TCP implementation.				
6.	implementation TCP i	mplementation.			
6.	implementation TCP i	mplementation. Unit –III			
6.	Remote Command Ex	Unit –III			
7.	Remote Command Ex	Unit –III		4 hrs	
	Remote Command Ex Introduction Security rexecd Server.	Unit –III ecution		4 hrs	
	Remote Command Ex Introduction Security rexecd Server. Remote Login	Unit –III ecution	Server rexec function and	4 hrs	

- 1. W.R. Stevens, Unix Network Programming, PHI 2003.
- 2. M. J. Rochkind, Advanced Unix Programming, 2nd Edition, Pearson Education 2004.

Reference Books:

1. Sumitabha Das, Unix Concepts and Applications, 3rd Edition, Tata McGraw-Hill 2006.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
'''	Q.No8	8	Solve Ally 1 out of 2

BACK

Prog	ram: Bachelor of Engin	eering		
Cou	rse Title: Software Defir	ned Networks	Course Code: 20ECSE405	
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	Teaching Hrs: 40 hrs Exam Duration: 3 hrs			
		Unit –I		
	Introduction			
1.		volving network requirements, Types of Network and Internet Traffic, The SDN oproach, Data Center Networking: Big Data over SDN, Cloud Networking over		
	SDN Data Plane and C	penFlow		
2.	Data plane functions a	nd protocols, OpenFlow	logical network device, OpenFlow	8 hrs
	protocol, OpenFlow n	nessages, OpenFlow eve	nts: Responding to switches.	
		Unit –II		
	Control Plane			
3.	SDN Control plane architecture, POX architecture, OpenDaylight architecture,			
	REST, Mininet based e	xamples		
	Programming SDNs			
_	Components in POX, POX APIs, Registering Components, The Event System:			
4.	Handling Events, Creating Your Own Event Types, Raising Events, Binding to Components' Events, Working with packets, Working with sockets: ioworker,			
		Working with packets,	Working with sockets: loworker,	
	OpenFlow in POX.	Unit –III		
	Software Application			
5.	= =	•	Engineering, Measurement and	4 hrs
٥.		Requirements, SDN Secu	<u> </u>	4 1113
	Network Functions Vi			
		, ,	works, Network Virtualization: A	_
6.	OpenFlow VLAN Support, Virtual Private Networks, Network Virtualization: A Simplified Example, Network Virtualization Architecture, Benefits of Network			4 hrs
	Virtualization.		•	
Toyt	Books:			1

- 1. William Stallings, "Foundations of modern networking: SDN, NFV, QoE, IoT and Cloud", Addison Wesley; 1 edition, 2015.
- 2. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks", O'Reilly, 2013.

Reference Books:

- 1. Sreenivas Voruganti, Sriram Subramanian, "Software-Defined Networking (SDN) with OpenStack", Packt Publishing, 2016.
- POX manual current documentation, https://openflow.stanford.edu/display/ONL/POX+Wiki.html

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
'''	Q.No8	6	Solve Ally I out of Z

BACK

Prog	gram: Bachelor of Engineering			
Cou	rse Title: Cyber Security		Course Code: 19ECS	E401
L-T-I	-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/w		veek	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tead	ching Hrs: 30 hrs	Practical: 28 hrs	Exam Duration: 3 hr	'S
		Unit –I		
	Chapter No. 1			
	Introduction to Cybercrime:	Cybercrime definition and o	rigins of the world,	
1.	Cybercrime and information	security, Classifications of c	ybercrime, A global	6 hrs
1.	Perspective on cybercrimes	. Cyberattack plans, Social	Engineering, Cyber	0 1113
	stalking, Cyber cafe and Cyl	percrimes, Botnets, Prolifera	tion of Mobile and	
	Wireless Devices, Credit Card	Frauds in Mobile and Wireles	ss Computing Era.	
	Chapter No. 2			
	Methods used in Cybercrime: Phishing, password Cracking, Key loggers and			
2.	Spyware, Virus and Worms,	Trojan and backdoors, Stega	anography, DOS and	6 hrs
	DDOS attack, SQL injection, Buffer Overflow, Attack on wireless networks,			
	Identity theft			
		Unit –II		
	Chapter No. 3			
3.	Cybercrimes and Cyber security: The Legal Perspectives Why do we need Cyber			6 hrs
3.	law: The Indian Context, The Indian IT Act, Digital Signature and the Indian IT			0 1113
	Act, Amendments to the India	an IT Act, Cybercrime and Pur	nishment.	
	Chapter No. 4			
4.	Cybercrime: Illustrations, Exa	amples and Case Studies In	troduction, Real-Life	6 hrs
٦.	Examples, Case Studies: Illustr	rations of Financial Frauds in C	Cyber Domain, Digital	0 1113
	Signature-Related Crime Scen	arios, Online Scams.		
Unit –III				
	Chapter No. 5			
5.	Digital Forensics: Historical b	ackground of cyber forensic,	Forensic analysis of	6 hrs
J .	email, Digital forensic life c	ycle, Network forensic, Sett	ing up a computer	0 1113
	forensic Laboratory, Forensic	analysis of digital media		
Text	: Books:			

- 1. Nina Godbole & Sunit Belapure, Cyber Security, Wiley India, 2018
- 2. Robert M Slade, Software Forensics, Tata McGraw Hill, New Delhi, 2005

Reference Books:

1. Kevin Mandia, Chris Prosise, Matt Pepe, Incident Response and Computer Forensics, Tata McGraw -Hill, New Delhi,, 2008

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
""	Q.No8	5	Solve Ally 1 out of 2

Cyber Security – Tutorial

Practical assignments on

1.	Phishing attack
2.	SQL injection
3.	CSRF attack
4.	XSS attack
5.	Password cracking
6.	Man In The Middle attack
7.	Hash calculation
8.	File encryption -
9.	DoS Attack

BACK

Prog	ram: Bachelor of Engi	neering		
Cour	se Title: Mobile and W	/ireless Networks	Course Code: 20ECSE41	2
L-T-P	:3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	(
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit –I		
	Introduction: Characteristics of Cellular Systems, Fundamentals of Cellular			
1.	'	stem Infrastructure, Satellite Syste	,	4 hrs
		nsor Networks, Wireless LANs, M.		
	<u> </u>	gation: Introduction, Types of Rac		
2.		pace Propagation, Land Propagat		6 hrs
-	Ī -	Intersymbol Interference, Coheren	ce and width Cochannel	••
	Interference.			
	<u>-</u>	troduction, Cell Area. Signal Streng		
3.	' '	Frequency Reuse, How to Form	a Cluster, Cochannel	6 hrs
	interference, Cell Splitting, Cell Sectoring.			
		Unit –II		
	Mobile Communicat	ion Systems: Introduction, Cellula	r System Infrastructure,	
	Registration, Handoff Parameters and Underlying Support, Parameters			
4.	Influencing Handoff, Handoff Underlying Support, Roaming Support, Home			5 hrs
	Agents, Foreign Agents, and Mobile IP, Rerouting in Backbone Routers,			
		er 10 from Text book)		
		d transport layer: Mobile IP Pac	,	
5.	Reverse tunneling, IPV6-Dynamic host routing protocol, Traditional TCP-			5 hrs
	Congestion control-classical TCP-Snooping Mobile TCP, Transaction oriented			
	TCP-TCP over 2.5/3G			
		Mobile Networks: Drivers for 5G		
6.		Networks. Cooperation for Nex	xt Generation Wireless	6 hrs
	Networks			
		Unit –III		
7.		nology and Services for Future Co	mmunication Platforms,	4 hrs
		G Wireless Networks.	Tarandari 🛨 I. s. s.	
		echnologies: Femtocell Network:		
8.	_	Push-to-Talk (PTT) Technology		4 hrs
		EN Cellular Networks, PTT in Non-	IDEN Cellular Networks:	
	PoC. (Chapter 16)			

- 1. Dharma Prakash Agrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.
- 2. Rodriguez, Jonathan. Fundamentals of 5G mobile networks. John Wiley & Sons, 2015.
- 3. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.
- 4. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited , 2011.

Reference Books:

- 1. Wireless telecommunications systems and networks by Gray J. Mullet, Cengage Learning, Reprint 2014.
- 2. Upena Dalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. Martyn Mallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
111	Q.No7	5	Solve Any 1
III	Q.No8	6	Solve Ally 1

BACK

Cour	se Title: Wireless Communi	cation Networks	Course Code: 22ECSE41	.5
L-T-P	2: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/wee	ek
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit – I		
	Introduction to Wireless T	ransmissions		
		communication systems; gation – path loss of radios	•	
1.	' ' -	-path propagation; Multiples tude shift keying, frequency	_	8 hrs
	keying, advanced freque	ncy shift keying, advance pread spectrum – DSSS, FHS	d phase shift keying,	
	Medium Access Control	,	, ,	8
2.				
	Telecommunication and Satellite Systems			8
3.	GSM – Mobile services, system architecture, radio interface, protocols,			
	localization and calling, handover, security, new data services; Applications of			
	satellite systems; Types of	satellite systems – GEO, LEO,	, MEO.	
	1 -	Unit – II		1
	Wireless LAN			
4.		sions; Infrastructure and ad-h		8
		otocol architecture, physical		hrs
		2.11a, newer developments;	HIPERLAN; Bluetooth	
	4G Networks and Beyond	and howevery 1. What is 4.C LTE). ITE OEDNAA/CCEDNAA.	
		ind beyond; What is 4G LTE		8
5.	MIMO; LTE duplex; LTE frame and subframe; LTE-M; LTE-LAA/LTE-U; LTE Advanced – introduction, carrier aggregation, coordinated multipoint, D2D			hrs
		5G; Technologies enabling 5	•	1113
	·	work function virtualization	innivvave, massing	
Text	books:			1
1. J	lochen H. Schiller, "Mobile C	ommunications", second edi	tion, Addison-Wisely.	
	rongo Dooks.			

Reference Books:

- 1. Theodore S Rappaport, "Wireless communications: Principles and Practise", 2nd Edition, Pearson.
- 2. William Stallings, "Wireless Communications & Networks", 2nd Edition, Pearson

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
- 1	Q.No1, Q.No2, Q.No3, Q.No4,	1, 2, 3	Solve Any 3 out of 5
	Q.No5		
II	Q.No6, Q.No7, Q.No8	4, 5	Solve Any 2 out of 3

BACK

C	an Titler Colon Color	to a seed Dubers are	Cause Cada 225005454	
	se Title: Cyber Securi		Course Code: 23ECSE454	
	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA N	Marks: 100	ESA Marks: 0	Total Marks: 100	
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit	t –l	
	Introduction - Intro	duction to cyber sec	curity, Confidentiality, integrity, and	
1	availability.			6 hrs
-	Foundations - Fundamental concepts, CIA, CIA triangle, data breach at			0 1113
	target.			
	Security management: Governance, risk, and compliance (GRC)- GRC			
2	framework, security standards.			6 hrs
	Contingency planning - Incidence response, Disaster Recovery, BCP			
3	Cyber security police	y - ESSP, ISSP, SYSSP.		4 hrs
		Unit	: –II	
4	Risk Management -	Cyber Risk Identifica	tion, Assessment, and Control.	6 hrs
4	Cyber security : Industry perspective - Défense Technologies, Attack, Exploits.			
5	Cyber security tech	nologies - Access cor	ntrol, Encryption, Standards.	6 hrs
Э	Foundations of privacy - Information privacy, Measurement, Theories.			o nrs
6	Privacy regulation -	Privacy, Anonymity,	Regulation, Data Breach.	4 hrs
		Unit	-III	
7	Privacy regulation in Europe, Privacy: The Indian Way - Data Protection,		4 hrs	
/	GDPR, DPDP, Aadhar.			
	Information privace	: Economics and st	rategy, Economic value of privacy,	
8	privacy valuation, WTA and WTC, Business strategy and privacy, espionage,			4 hrs
	Privacy vs safety.			l

Course registration link: https://onlinecourses.nptel.ac.in/noc23 cs127/preview Resource Person: Prof. Saji K Mathew, IIT Madras

- 1. Michael E. Whitman, Herbert J. Mattord, (2018). Principles of Information Security, 6th edition, Cenage Learning, N. Delhi.
- 2. Darktrace, "Technology" https://www.darktrace.com/en/technology/#machine -learning, accessed November 2018.

Reference Books:

- 1. Van Kessel, P. Is cyber security about more than protection? EY Global Information Security Survey 2018-2019.
- 2. Johnston, A.C. and Warkentin, M. Fear appeals and information security behaviors: An empirical study. MIS Quarterly, 2010.
- 3. Arce I. et al. Avoiding the top 10 software security design flaws. IEEE Computer Society Center for Secure Design (CSD), 2014.

- 4. Smith, H. J., Dinev, T., & Xu, H. Information privacy research: an interdisciplinary review. MIS Quarterly, 2011.
- 5. Subramanian R. Security, privacy and politics in India: a historical review. Journal of Information Systems Security (JISSec), 2010.
- 6. Acquisti, A., John, L. K., & Loewenstein, G. What is privacy worth? The Journal of Legal Studies, 2013
- 7. Xu H., Luo X.R., Carroll J.M., Rosson M.B. The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems, 2011.

ISA: Scheme of Evaluation

Details	Marks
SWAYAM	
Exam will be conducted by SWAYAM and passing criteria is as follows	
Average assignment score = 25% of average of best 8 assignments out of	
the total 12 assignments given in the course.	50
Exam score = 75% of the proctored certification exam score out of 100	
Final score = Average assignment score + Exam score	
ISA1 & ISA2	50
Total	100

BACK

Prog	ram: Bachelor of Engineering	5		
Cour	Course Title: Software Testing Course Code:18ECSE			407
L-T-P	L-T-P:3-0-0 Credits: 3 Contact Hrs: 03 hrs/v		/week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs	5
		Unit – 1		
1	Software Testing Principles	Need for testing ,The Psycholo	gy and Economics of	4 hrs
1.	Program Testing Program ,Ir	spections, Walkthroughs, and	Reviews.	4 nrs
	Test-Case Design: Overview	w, White box testing, Error G	uessing, strategies ,	
2.	Module (Unit) Testing-Incre	mental Testing, Top-down versu	ıs Bottom-up Testing,	6 hrs
	Performing the Test.			
	Higher-Order Testing: Fund	ction testing, System testing,	Acceptance testing,	
3.	Installation testing, Test planning and Control, Test completion criteria, Extreme			6 hrs
	testing.			
		Unit – 2		
	Testing Tools and Standards: Automated Tools for Testing - Static code analyzers			
4.	- Test case generators - GUI Capture/Playback - Stress Testing - Testing Client -			10 hrs
4.	server applications – Testing compilers and language processors - Testing web-			10 1113
	enabled applications.			
5.	CMM Model and its stage	es – Introduction to PCMM, C	MMI and Six Sigma	6 hrs
٥.	concept – ISO 9000.			0 1113
Unit – 3				
	Software Quality and Test	ing: Introduction to software	quality and quality	
6.	control – Benefits of quality control - Quality assurance - quality circles and			4 hrs
	quality improvement.			
	Introduction to quality of	cost – Measuring quality co	ost – Total Quality	
7.	Management (TQM).Architecture, Process, memory and file management in			4 hrs
	Mobile OS, Network OS.			
Tovt	Books:		·	·

- 1. Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The Art of Software Testing", John Wiley & Sons, Second edition, 2004.
- 2. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-Hill International Edition, Seventh edition, 2009.

References:

- 1. William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons, Second edition, 2000.
- 2. Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995.
- 3. P.C. Jorgensen, "Software Testing A Craftman's Approach", CRC Press, 1995.
- 4. Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20	Chapter Numbers	Instructions
	Marks Each		
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7, Q.No8	6, 7	Solve Any 1

BACK

Prog	gram: Bachelor of Engin	eering		
Cou	rse Title: C# Programmi	ng and .NET	Course Code: 18ECSE409	
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	ching Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit –I		
1.	Infrastructure (CLI). K Common Language Sp (CLR), Understand th Contrast single-file an	vation behind the .NET now the role of the Concecification (CLS) and the e assembly, metadata, of multi-file assemblies, K	olatform, Common Language nmon Type System (CTS), the Common Language Runtime namespace, type distinction, now the role of the Common ndent .NET(Mono / Portable	5 hrs
2.	Nullable and enum tobjects, Using static necessal Encapsulating data, a	cals, Reference and valu ypes, Classes and object nembers, Overloading M ccess modifiers, propert	e Types, primitive types the ss, Defining classes, Creating ethods, Various Constructors. es, indexers arrays and read sses, three pillars of OOPs	7 hrs
3.	System. Exception b Exceptions, CLR System Application-Level Ex Multiple Exception,	nd Exceptions, The Role of ase class, Throwing a m-Level Exceptions (Syste acceptions (System.Appl The Finally Block, Th	E.NET Exception handling, the generic Exception, Catching em.SystemException), Custom icationException). Handling he Last Chance Exception, new", The Basics of Garbage	4 hrs
	1	Unit –II		
4.	Understanding the .l Interfaces, overridir implementation, Colle	ng interface impleme ection, IEnumerable, IEnu	ticast Delegate and events.	6 hrs

	Programming Window Forms Applications		
_	Anatomy of a Form, Component Class, Control Class, Control Events, Responding to Keyboard Events, Form Class, Building Menus with Windows	5 hrs	
5.	Forms, Building your Menu System, Creating Pop-Up Menu, Adding Controls	5 nrs	
	to Forms (IDE-Free), Adding Controls to Forms (via VS.NET), Working with		
	Basic Controls like Buttons, Configuring Tab Order.		
	Working with Database		
	Introduction to ADO.NET , Connecting to a database, Understanding		
6.	DataTables, Creating a DataAdapter, Referencing fields in a DataRow,	5 hrs	
	Navigating records ,Adding, editing, and deleting records, Building an		
	ADO.NET example.		
Unit –III			
	Understanding the .NET Assemblies		
	Problems with Classic.COM Binaries, An overview of .NET Assembly, Building		
7.	a single file test assembly, A C# Client Application, A Visual Basic .NET Client		
	Application, Cross-Language Inheritance, Exploring the Car Library's Manifest,		
	Exploring the Car Library's Types.		
	Using .NET Assemblies		
	Building a multi file assembly, Using the Multifile Assembly , Understanding		
	the private Assemblies, Probing for private Assemblies (The Basics), Private		
8.	Assemblies and XML Configuration Files, Probing for Private Assemblies(The	4 hrs	
	dataila\ Iladaystandina Chayad Assamblias Iladaystandina Chayad Namas		
	details), Understanding Shared Assemblies, Understanding Shared Names,		
	Building a Shared Assembly, Understanding Delay Signing,		

- 1. Herbert Schildt, "The Complete Reference C# 4.0", Tata McGraw –Hill, 2010
- 2. Andrew Troelsen, "Pro C# with .NET 3.0", Special Edition, Dream tech Press, India, 2007.

Reference Books:

- 1. Stephen C. Perry, Atul Kahate, Stephen Walther, Joseph Mayo, "Essential of .net and
- 2. Related Technologies with a focus on C#, XML, ASP.net and ADO.net", 2nd Edition, Pearson, 2009.
- 3. Paul J. Deitel, Harvey Deitel, "Visual C# 2010 for Programmers", 4th Edition, Pearson, 2010.
- 4. Joseph Albahari and Ben Albhari, "C# 3.0/4.0 in Nutshell", 3rd Edition, O'Rilley, 2007.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
'''	Q.No8	8	Solve Ally 1 out of 2

BACK

Prog	ram: Bachelor of Enginee	ring		
Cou	se Title: Advanced Paralle	el Computing	Course Code:18ECSE	408
L-T-F	?:3-0-0	Credits: 3	Contact Hrs: 03 hrs/v	week
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40 hrs		Exam Duration: 3 hrs	}
		Unit –I		
1.	Programming Language: Graphics Pipelines; The E of Programmable Real-	outers; Architecture of a Mess and Models; Overarching fra of Fixed-Function; Graphic Time Graphics; Unified Grap Intermediate Step; GPU Comp	Goals; Evolution of cs Pipelines; Evolution hics and Computing	7 hrs
2.	Example; Device Memory Threading; Function de Runtime API.CUDA Threa	Program Structure; A Matrix- ories and Data Transfer; Ke eclarations; Kernel launch; F ad Organization; Using b1ock nsparent Scalability; Thread	Predefined variables; ld x and thread ld x;	9 hrs
Unit –II				I.
3.	Strategy for Reducing Glo Parallelism; Global Me Resources;	Access Efficiency; CUDA Deviobal Memory Traffic; Memory amory Bandwidth; Dynamic truction Mix; Thread Gra	as a Limiting Factor to	7 hrs
4.		L; Background; Data Paralle nctions; Device Management ap in OpenCL.		9 hrs
		Unit –III		
5.		n, Applications like Matrix mult r Visualization and Gaming.	tiplication, MRI	4 hrs
6.		d Computational Thinking Iming, Problem Decomposition I Thinking.	n, Algorithm	4 hrs

1. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1.Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
ı	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally 1

BACK

Prog	gram: Bachelor of Engin	eering		
Cou	rse Title: Software Arch	itecture and Design Thinking	Course Code: 18E0	CSE410
L-T-I	-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs			s/week
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tead	ching Hrs: 40 hrs		Exam Duration: 3	hrs
		Unit – 1	I	
	What Is Software Arcl	nitecture? What Software Architect	ure Is and What It	
1.	Isn't, Architectural S	ructures and Views, Architectura	al Patterns, What	5 hrs
	Makes a "Good" Archi	tecture?		
	Why Is Software Arch	itecture Important? Inhibiting or E	nabling a System's	
	Quality Attributes, Re	easoning About and Managing C	hange, Predicting	
	System Qualities, Enha	ancing Communication among Stak	eholders, Carrying	
	Early Design Decisio	ns, Defining Constraints on an	Implementation,	
2.	Influencing the Organi	zational Structure, Enabling Evolution	onary Prototyping,	6 hrs
	Improving Cost and So	hedule Estimates, Supplying a Tran	sferable, Reusable	
	Model, Allowing Incorporation of Independently Developed Components,			
	Restricting the Vocabulary of Design Alternatives, Providing a Basis for			
	Training			
	The Many Contexts of Software Architecture: Architecture in a Technical			
3.	Context, Architecture in a Project Life-Cycle Context, Architecture in a			5 hrs
Э.	Business Context, Arch	nitecture in a Professional Context, S	Stakeholders, How	2 1113
	Is Architecture Influen	ced?, What Do Architectures Influe	nce?	
		Unit - 2		
	Understanding Qual	ity Attributes: Architecture an	d Requirements,	
4.	Functionality, Quality	Attribute Considerations, Specifying	g Quality Attribute	5 hrs
	Requirements, Achieving Quality Attributes through Tactics, Guiding Quality			3 1113
	Design Decisions			
	` '	ctics for Availability, Tactics for Inter	' "	
5.	•	ics for Performance, Tactics for Se	ecurity, Tactics for	6 hrs
	Testability, Tactics for I	Jsability.		
		and Patterns: Architectural Patterns		5 hrs
6.	6. Patterns Catalog, Relationships between Tactics and Patterns, Using Tactics			
Together				
		Unit – 3		
		equirements: Gathering ASRs fro	•	
7.	· ·	g ASRs by Interviewing Stakeholder		4 hrs
	by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying			
	the Methods Together			

	Designing an Architecture, Implementation, Testing and Evaluation		
	Designing: Design Strategy, The Attribute-Driven Design Method, The Steps		
8.	of ADD, Implementation, and Testing: Architecture and Implementation,	4 hrs	
	Architecture and Testing, Evaluation: Evaluation Factors, The Architecture		
	Tradeoff Analysis Method, Lightweight Architecture Evaluation		

Text Books (List of books as mentioned in the approved syllabus)

- 1. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice (3rd Edition), Addison-Wesley Professional; 3 edition
- 2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern- Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2012 (chapter 2)

References:

- 1. Richard N. Taylor, Nenad Medvidovic and Eric M. Dashofy: Software Architecture: Foundations, Theory, and Practice, Wiley-India 2012
- 2. Mary Shawand David Garlan: Software Architecture-Perspectives on an Emerging Discipline, Prentice Hall of India, 20

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
III	Q.No7 7	Solve Any 1 out of 2	
'''	Q.No8	8	Solve Ally 1 out of 2

BACK

Program: Bachelor of Engineering Course Title: Model Thinking Course Code: 18EC				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/v		
ISA Marks: 50	ESA Marks:50	Total Marks: 100		
Teaching Hrs: 40 hrs	257 11101110150	Exam Duration: 03	hrs	
	Unit –I			
Why Model				
1. Model Thinking -	The Need, Advantages	and Disadvantages,	4 hrs	
	Segregation/Peer Effects, Case Study			
	ng Points & Economic Growt	:h		
	Rational Models, Behavioral Models, Rule Based Models, Percolation Models,			
Growth and its Kinds				
Special Topics				
Standing Ovation Model	Standing Ovation Model, Game of Life, Lyapunov Functions: Equilibrium, A			
3. cycle, Randomness or C	cycle, Randomness or Complexity, Coordination and Culture, Urn Models,			
Polya Process, Paths and	Polya Process, Paths and Networks, Prisoners' Dilemma, Collective Action &			
Mechanism Design				
	Unit –II			
Randomness and Learni	ng Models			
4. Luck as Randomness, Ra	Luck as Randomness, Random Walks & Colonel Blotto, Replicator Dynamics,			
Fisher's Fundamental Tl	Fisher's Fundamental Theorem, Prediction and the Many Model Thinker,			
Social Models	Social Models			
Model Checking and Mo	delling Concurrent Systems			
	cteristics of Model Checki	•	8 hrs	
Parallelism and Commun	nication, The State Space Exp	losion		
1	Unit –III			
Linear-Time Properties	_			
	efety Properties and Invariar	nts, Liveness Properties,	eness Properties, 4 hrs	
Fairness				
	Regular Properties			
7. Automata on Finite W	Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with Omega-Regular Properties			

2. Christel Baier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Mind Series), The MIT Press, 2008.

Reference Books:

1. Model Thinking Coursera online course from Michigan University.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2	
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2	
III	Q.No7	6	Solve Any 1	
""	Q.No8	7	Solve Ally I	

BACK

Program: Bachelor of Engineering				
Course Title: Quantum Computing Fundamentals Course Code: 22ECS			E416	
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teac	ching Hrs: 40 hrs		Exam Duration: 3 hrs	s
		Unit – I		
1.	Introduction and Background Overview, Computers and the Strong Church–Turing Thesis, The Circuit Model of Computation, A Linear Algebra Formulation of the Circuit Model, Reversible Computation, A Preview of Quantum Physics, Quantum Physics and Computation.			7 hrs
2.	Linear Algebra and the Dirac Notation The Dirac Notation and Hilbert Spaces, Dual Vectors, Operators, The Spectral Theorem, Functions of Operators, Tensor Products, The Schmidt Decomposition Theorem, Some Comments on the Dirac Notation.			5 hrs
3.	Introduction to Quantum computing frameworks: Toolbox in python, QISKIT, Xanadu, Rigetti etc.			4 hrs
	Unit – II			
4.	Qubits and the Framework of Quantum Mechanics The State of a Quantum System, Time-Evolution of a Closed System, Composite Systems, Measurement, Mixed States and General Quantum Operations, Mixed States, Partial Trace, General Quantum Operations.			8 hrs
5.	A Quantum Model of Computation The Quantum Circuit Model, Quantum Gates, 1-Qubit Gates, Controlled-U Gates, Universal Sets of Quantum Gates, Efficiency of Approximating Unitary Transformations, Implementing Measurements with Quantum Circuits.			5 hrs
6.	Exploring Python for Solving Problems / Projects using Quantum Computing			3 hrs
	Unit – III			
7.	Introductory Quantum Algorith Probabilistic Versus Quantum Algorithm, The Deutsch–Jozsa A	Algorithms, Phase Kick	,	4 hrs
8.	Case Studies and Projects done Image processing, Data Sciences	_	orking	4 hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

References

Internet References, toolbox and other relevant software.

BACK