

Curriculum Structure and Curriculum Content for the Academic year: 2021-25

School: Computer Science and Engineering Program: BE- Computer Science and Engineering (Artificial Intelligence)

Table of Contents

Vision and Mission of KLE Technological University
Vision and Mission Statements of the School / Department4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives5
Program Educational Objectives -PEO's5
Curriculum Structure-Overall
Curriculum Structure-Semester wise8
Semester - I
Semester - II9
Semester- III
Semester- IV 11
Semester- V
Semester- VI
Semester- VII
Semester- VIII
List of Open Electives
List of Program Electives
Curriculum Content- Course wise19

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education–recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the School / Department

Department Vision

The KLE Tech- School of Computer Science will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in a wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

PEO: 1. Graduates will demonstrate peer recognized technical competency to solve analyze, design, develop, deploy and maintain computing solutions for contemporary problems.

PEO: 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.

PEO: 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education and self-study.

PEO: 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.

PO 2: **Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

PO 4: **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO 6: **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: **Communication**: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives -PSO's

PSO 1: Domain-specific knowledge: An ability to apply techniques to develop computer based solutions in the domain of data, system and network engineering.

PSO 2: Software System Construction: Apply design and development principles in the construction of software systems of varying complexity.

Curriculum Structure-Overall

Sem	ester				Total	Program Credits:	177.5(44+133.5)	Year : 202	1-25
	I	II		IV	V	VI	VII	V	
	Single Variable Calculus 18EMAB101(4-1-0)	Multivariable Calculus 18EMAB102 (4-1-0)	Graph Theory and Linear Algebra 15EMAB204(4-0-0)	Probability & Statistics 22EMAB211 (4-0-0)	Software Engineering 22ECAC301(3-0-0)	Deep Learning 22ECAC305 (3-0-1)	Big Data & Analytics 22ECAC401 (2-0-1)	PE-6 XXECAE4XX (3-0-0)	Industry Training
	Engineering Physics 15EPHB101 (3-0-0)	Engineering Chemistry 15ECHB102 (3-0-0)	Discrete Mathematical Structures 22ECAC201 (3-1-0)	Microcontroller: Programming and Interfacing 2ECAC206 (1-0-3)	Computer Networks 22ECAC302(3-0-0)	Embedded Intelligent Systems 23ECAC306 (1-0-2)	Information Security 22ECAC402 (2-0-1)	OE XXECAO4XX (3-0-0)	22ECAI402 (0-0-6)
	Engineering Mechanics 15ECVF101 (4-0-0)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Computer Organization and Architecture 22ECAC202 (3-0-1)	Object Oriented Programming 22ECAC207 (3-0-0)	Machine Learning 22ECAC303 (3-0-0)	PE-2 XXECAE3XX (3-0-0)	PE-4 XXECAE4XX(3-0-0)	Capstone 22ECAW402	•
rse code	C Programming for Problem Solving 18ECSP101 (0-0-3)	Engineering Exploration 15ECRP101 (0-0-3)	Data Structures and Algorithms 22ECAC203 (4-0-0)	Operating System Principles and Programming 22ECAC208 (4-1-0)	Internet of Things 22ECAC304 (2-0-1)	PE-3 XXECAE3XX (3-0-0)	PE-5 XXECAE4XX (3-0-0)	Project 22 (0-0	2ECAI401
with course	Basic Electrical Engineering 18EEEF101 (3-0-0)	Basic Electronics 18EECF101 (4-0-0)	Database Management System 22ECAC204 (4-0-0)	Principles of Compiler Design 22ECAC209 (3-1-0)	Machine Learning Lab 22ECAP303 (0-0-1.5)	Minor Project-1 23ECAW303 (1-0-4)	Senior Design Project 22ECAW401 (0-0-6)		
ourse wi	Design Thinking for Social Innovation 20EHSP101(0-1-1)	Basic Mechanical Engineering 15EMEF101 (2-1-0)	Introduction to AI 22ECAC205(2-0-0)	Exploratory Data Analysis 22ECAC210 (2-0-2)	Web Technologies Lab 22ECAP304 (0-0-2)	Minor Project-2 23ECAW304(0-0-5)			
CO	Applied Physics Lab 21EPHP101(0-0-1)	Professional communication 15EHSH101(1-1-0)	Database Applications Lab 22ECAP201(0-0-1.5)	Object Oriented Programming Lab 22ECAP206 (0-0-1.5)	Computer Networks Lab 22ECAP302(0-0-1.5)				
			Data Structures and Algorithms Lab 22ECAP202 (0-0-2)		PE-1 XXECAE3XX(3-0-0)		Professional Aptitude & Logical Reasoning 23EHSA302 (audit)		
					Mini Project 22ECAW301(0-0-3)		Industry Readiness & Leadership Skills 23EHSA304 (audit)		
			Corporate Communication 22EHSC201 (0.5-0-0)	Problem Solving & Analysis 22EHSH202 (0.5-0-0)	Arithmetical Thinking & Analytical Reasoning 22EHSH301 (0.5-0-0)		CIPE(Audit) 15EHSA401		
Cred its	21	23	26	26	23.5	23	18	1	7

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	3	80	20	100	3 hours
7	21EPHP101	Applied Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
			14-2-5	21	27	440	260	700		
ISA:	In Semester Assess	sment ESA: End Semester Assessm	nent	L: Lect	ture	T: Tute	orials		P: Prac	tical

Date:

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	15ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
4	15ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	15EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	3 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
		Total	•	15-2-6	23	32	410	290	700	
ISA: I	n Semester Asse	ssment ESA: End Semester Asses	sment	L:	Lecture	T:	Tutoria	ls	P : P	ractical

Date:

Semester- III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	15EMAB204/ *15EMAB233	Graph Theory and Linear Algebra	РС	4-0-0	4	4	50	50	100	3 hours
2	22ECAC201	Discrete Mathematical Structures	PC	3-1-0	4	5	50	50	100	3 hours
3	22ECAC202	Computer Organization and Architecture	PC	3-0-1	4	5	50	50	100	3 hours
4	22ECAC203	Data Structures and Algorithms	PC	4-0-0	4	4	50	50	100	3 hours
5	22ECAC204	Database Management System	РС	4-0-0	4	4	50	50	100	3 hours
6	22ECAC205	Introduction to AI	PC	2-0-0	2	2	50	50	100	3 hours
7	22ECAP201	Database Applications Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	22ECAP202	Data Structures and Algorithms Lab	РС	0-0-2	2	4	80	20	100	3 hours
9	22EHSC201	Corporate Communication	HS	0.5-0-0	0.5	1	100	0		
		TOTAL	20.5-1-4.5	26	32	560	340	800		
I	SA: In Semester	Assessment ESA : End Semester	Assessment	L:	Lecture	T : Tu	torials	P	: Practical	

*Note: (15EMAB233) Graph theory and Calculus course offered only for Diploma students

Date:

Semester- IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	22EMAB211/ *15EMAB243	Probability & Statistics / Vector Calculus and Linear Algebra	BS	4-0-0/ 4-0-0	4	5	50	50	100	3 hours
2	22ECAC206	Microcontroller: Programming and Interfacing	PC	1-0-3	4	7	100	0	100	3 hours
3	22ECAC207	Object Oriented Programming	PC	3-0-0	3	3	50	50	100	3 hours
4	22ECAC208	Operating System Principles and Programming	PC	4-1-0	5	6	50	50	100	3 hours
5	22ECAC209	Principles of Compiler Design	PC	3-1-0	4	5	50	50	100	3 hours
6	22ECAC210	Exploratory Data Analysis	PC	2-0-2	4	6	80	20	100	3 hours
7	22ECAP206	Object Oriented Programming Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	22EHSH202	Problem Solving & Analysis	HS	0.5-0-0	0.5	1	100	-	100	3 hours
				17.5-2-6.5	26	36	560	240	800	
ISA	: In Semester As	ssessment ESA : End Semester A	ssessment	L:	Lecture	T : Tu	torials		P: Practica	

*Note: (15EMAB243) Vector calculus and Linear Algebra offered for only Diploma students

Date:

Semester- V

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	22ECAC301	Software Engineering	PC	3-0-0	3	3	50	50	100	3 hours
2	22ECAC302	Computer Networks	PC	3-0-0	3	3	50	50	100	3 hours
3	22ECAC303	Machine Learning	PC	3-0-0	3	3	50	50	100	3 hours
4	22ECAC304	Internet of Things	PC	2-0-1	3	4	50	50	100	3 hours
5	22ECAP303	Machine Learning Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
6	22ECAP304	Web Technologies Lab	PC	0-0-2	2	4	80	20	100	3 hours
7	22ECAP302	Computer Networks Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	XXECAE3XX	Professional Elective-1	PC	3-0-0	3	3	50	50	100	3 hours
9	22ECAW301	Mini Project	PW	0-0-3	3	6	50	50	100	3 hours
10	22EHSH301	Arithmetical Thinking & Analytical Reasoning	HS	0.5-0-0	0.5	1	100	-	100	3 hours
	*15EMAB303	Statistics and probability	РС	3-0-0	03	3	50	50	100	3 hours
				14.5-0-9	23.5/26.5	33/36	640/	390/	1000/	
							670	720	1100	
ISA:	In Semester Ass	sessment ESA : End Semester A		L: Lecture	T : Tut	orials		P: Practi	cal	

Note: *15EMAB303 Statistics and probability is only for Diploma students

Date:

Semester- VI

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	22ECAC305	Deep Learning	PC	3-0-1	4	5	50	50	100	3 hours
2	23ECAC306	Embedded Intelligent Systems	РС	1-0-2	3	6	80	20	100	3 hours
3	XXECAE3XX	Professional Elective-2	РС	3-0-0	3	3	50	50	100	3 hours
4	XXECAE3XX	Professional Elective-3	РС	3-0-0	3	3	50	50	100	3 hours
5	23ECAW303	Minor Project-1	PW	1-0-4	5	9	50	50	100	3 hours
6	23ECAW304	Minor Project-2	PW	0-0-5	5	10	50	50	100	3 hours
		•	11-0-12	23	36	380	270	700		
ISA	: In Semester Ass	sessment ESA : End Semester	L: I	ecture	T : Tut	orials	Р	: Practical		

Date:

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	22ECAC401	Big Data & Analytics	РС	2-0-1	3	4	50	50	100	3 hours
2	22ECAC402	Information Security	РС	2-0-1	3	4	50	50	100	3 hours
3	XXECAE4XX	Professional Elective-4	EC	3-0-0	3	3	50	50	100	3 hours
4	XXECAE4XX	Professional Elective-5	EC	3-0-0	3	3	50	50	100	3 hours
5	22ECAW401	Senior Design Project	PW	0-0-6	6	12	50	50	100	3 hours
6	15EHSA401	<u>CIPE(Audit)</u>	HS	0-0-0	0	2	50	50	100	3 hours
7	*23EHSA304	Industry Readiness & Leadership Skills(audit)	HS	0-0-0	0	1	100	-	100	3 hours
8	*23EHSA302	Professional Aptitude & Logical Reasoning (audit)	РС	0-0-0	0	3	50	50	100	3 hours
				10-0-8	18	28	300	300	600	
ISA:	In Semester Asse	ssment ESA: End Seme	ster Assessme	ent	L: Lecture	T : 1	Tutorials		P: Practica	al

*22EHSH302 Industry Readiness & Leadership Skills (audit)

Date:

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	XXECAE4XX	Professional Elective-6	EC	3-0-0	3	3	50	50	100	3 hours
2	XXECAO4XX	Open Elective	OE	3-0-0	3	3	50	50	100	3 hours
3*	22ECAI402	Industry Training	PW	0-0-6	6	12	50	50	100	3hours
4*	22ECAI401	Industry Project		0 0 11	11	22	50	50	100	3 hours
4	22ECAW402	Capstone Project	PW	PW 0-0-11	11	22	50	50	100	S Hours
			TOTAL	6-0-17	17	40	200	200	400	

*Note students can either choose (1, 2 & 4(Capstone project) or (3-Industry training & 4-Industry project).)

Date:

Semester	I	II	111	IV	V	VI	VII	VIII	Total
Credits	21	23	26	26	23.5	23	18	17	177.5

List of Open Electives

Sr. No	Name of the Course	Course Code
1.	Distributed and Cloud Computing (2-0-1)	22ECAO401
2.	Database Management System (3-0-0)	22ECAO404
3.	High Performance Computing for Engineering Applications (3-0-0)	22ECAO402
4.	Essentials of IT (0-0-3)	22ECAO405
5.	Software Engineering (3-0-0)	22ECAO403
6.	Big Data Analytics (3-0-0)	22ECAO406

List of Program Electives

Sr. No	Name of the Course	Course Code
	3 rd Year (Professional Electives- 1, 2 & 3)	
	Data Engineering	
1.	Fundamentals of Image and Video Processing (2-0-1)	22ECAE310
2.	Computer Vision (2-0-1)	22ECAE311
3.	Reinforcement Learning(3-0-0)	22ECAE312
4.	Natural Language Processing with neural network models	22ECAE313
	(3-0-0)	
5.	Bioinformatics(3-0-0)	22ECAE314
6.	Computer Graphics(3-0-0)	22ECAE315
7.	Multimedia Computing(3-0-0)	22ECAE316
8.	Algorithmic Problem Solving(2-0-4)	23ECSE309
9.	Ethics in AI (3-0-0)	23ECAE325
	Networking	
1.	<u>DevOps</u> (1-0-2)	23ECAE318
2.	Cloud Computing (2-0-1)	22ECAE317
3.	Data Integration and Cloud Services(0-0-3)	22ECAE319
4.	Blockchain and Distributed Ledgers (2-0-1)	23ECAE324
	Systems Engineering	
1.	Parallel Computing(3-0-0)	22ECAE320
2.	Quantum Computing(3-0-0)	22ECAE321
3.	The ARM Architecture (2-1-0)	22ECAE322
4.	Robotic Process Automation Design and Development (3-0-0)	22ECAE323
	4 th Year (Professional Electives- 4, 5 & 6)	
	Data Engineering	
1.	Social Network Analysis(3-0-0)	22ECAE405
2.	Information Retrieval(2-0-1)	22ECAE406
3.	Advanced Computer Graphics(0-0-3)	22ECAE407
4.	Generative AI (2-0-1)	24ECSE458

5.	Social Network Analysis (NPTEL-Swayam) (3-0-0)	24ECSE405
6.	Responsible & Safe AI Systems (NPTEL-Swayam) (3-0-0)	24ECSE408
7.	Applied Accelerated Artificial Intelligence (NPTEL- Swayam)	24ECSE409
	(3-0-0)	
	Networking	
1.	Software Defined Networks(3-0-0)	22ECAE410
2.	Cyber Security (2-0-1)	22ECAE411
3.	Mobile and Wireless Networks (3-0-0)	22ECAE412
4.	Cyber Security and Privacy (NPTEL-Swayam) (3-0-0)	23ECSE401
	Systems Engineering	
1.	Advanced Parallel Computing (3-0-0)	22ECAE414
2.	Scalable AI(3-0-0)	22ECAE415
3.	Software Testing (NPTEL-Swayam) (3-0-0)	24ECSE402
4.	Design & Implementation of Human-Computer Interfaces	24ECSE403
	(NPTEL-Swayam) (3-0-0)	

Curriculum Content- Course wise

Semester	-	I

Program: Bachelor of Enginee	ering	Semester - I		
Course Title: Single Variable Calculus Course Code: 18EM		AB101		
L-T-P: 4-1-0	Credits: 05	Contact Hours: 4hrs/week		
ISE Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Tutorial/Practical: 28hrs	Exam Duration: 3hr	5	
	Unit I			
	ical Modeling odeling, why Mathematical cess of mathematical modeling	<u> </u>	04 hrs	
 2. Functions, Graphs and Models Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models 		05 hrs		
 3. Calculus of functions and models Limit of a function, Infinite limits- graph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton- Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L- Hospital's rule-Examples MatLab: optimization problems. Curvature problems 		11 hrs		
	Unit II			
 4. Infinite Series Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series 		06 hrs		

5. Integral calculus	14 hrs
Tracing of standard curves in Cartesian form, Parametric form and Polar form;	
Beta and gamma function, relation between them, evaluation of integrals using	
Beta and gamma functions; Applications to find arc length, Area, Volume and	
surface area (Cartesian, parametric and polar curves). Approximate integration-	
Trapezoidal rule, Simpson's 1/3 rule	
MatLab: problems on arc length, area, volume and surface area	
Unit III	
6. Ordinary differential equations of first order	10 hrs
(a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact	
equations and reducible to exact form, Numerical solution to Initial Value	
problems-Euler's method, Modified Euler's method and Runge-Kutta method	
(b) Applications of first order differential equations-Orthogonal trajectories	
growth and decay problems, mixture problems, Electrical circuits, falling bodies.	
MatLab: Solve differential equations	
Text Books	
1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7e 2010	
Reference Books:	
1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India,	2009.
2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010	

BACK

Pro	gram: Bachelor of Engin	eering	Semester - I	
Cou	urse Title: Engineering Pl	nysics	Course Code: 15EPHB101 Contact Hrs: 40 Total Marks: 100	
L-T-	P: 3-0-0	Credits:3		
ISA	Marks: 50	ESA Marks: 50		
Теа	ching Hrs: 40		Exam Duration: 3 Hrs	
		Unit I		
1	Chapter 1: Conduction	in semiconductors		05 hrs
	Atomic theory: The ato	om, electron orbits and energy	levels, energy bands,	
	Conduction in solids: E	lectron motion and hole transfe	r, conventional current	
	and electron flow			
	Conductors, semicond	uctors and insulators: Bonding	force between atoms,	
	Energy bands in differe	ent materials.		
	n-type and p-type	Semiconductors: Doping, n-T	ype material, p-Type	
	material, Majority and	d minority charge carriers, Effe	ects of heat and light,	
	charge carrier density.			
	Semiconductor condu	onductor conductivity: Drift current, diffusion current, charge carrier		
	velocity, conductivity, I	Hall Effect.		
	(Text 1 Page No 1-33)			
2	Chapter 2: Junctions			10 Hrs
	The pn-Junctions: June	ction of p-Type and n-Type, Bar	rier voltage, depletion	
	region, Qualitative the	ory of p-n Junction		
	Biased junctions: Reve	erse biased junction, forward bi	ased junction, junction	
	temperature effects.			
	Junction currents an	d voltages: Shockley equation	on, junction currents,	
	junction voltages.			
	1	naracteristics and parameters:	Forward and reverse	
	characteristics, diode p			
		: Ideal diode and practical di	odes, piecewise linear	
	characteristics, DC equ			
	-	DC load line, Q-Point, calculati	ng load resistance and	
	supply voltage.			
		Diode power dissipation, for	prward voltage drop,	
	dynamic resistance.			
		inction capacitance, AC-equiva	alent circuits (Reverse	
	biased and forward bia	sed), reverse recovery time.		

,,			
	Diode specifications: Diode data sheets, low power diodes, rectifier diodes		
	Diode testing: Ohmmeter tests, use of digital meter, plotting diode		
	characteristics.		
	Zener diodes: Junction break down, circuit symbols and packages,		
	characteristics and parameters, data sheet, equivalent circuits.		
	(Text 1 Page No 34-71)		
	Unit II		
3	Chapter 3: Electrostatics	15 Hrs	
	Review on vectors:		
	Coordinate Systems, Vector and Scalar Quantities, Properties of Vectors,		
	Components of a Vector and Unit Vectors		
	(Text 2 Page No 59-77)		
	Electric Fields:		
	Properties of Electric Charges, Charging Objects by Induction, Coulomb's Law,		
	Analysis Model: Particle in a Field (Electric), Electric Field of a Continuous		
	Charge Distribution, Electric Field Lines Motion of a Charged Particle in a		
	Uniform Electric Field		
	Gauss's Law:		
	Electric Flux, Gauss's Law, Application of Gauss's Law to Various Charge		
	Distributions, Conductors in Electrostatic Equilibrium		
	Electric Potential:		
	Electric Potential and Potential Difference, Potential Difference in a Uniform		
	Electric Field, Electric Potential and Potential Energy Due to Point Charges,		
	Obtaining the Value of the Electric Field from the Electric Potential, Electric		
	Potential Due to Continuous Charge Distributions Electric Potential Due to a		
	Charged Conductor, Applications of Electrostatics		
	Capacitance and Dielectrics:		
	Definition of Capacitance, Calculating Capacitance, Combinations of		
	Capacitors, Energy Stored in a Charged Capacitor, Capacitors with Dielectrics,		
	Electric Dipole in an Electric Field, An Atomic Description of Dielectrics		
	(Text 2 Page No 690-807)		
	Unit – III		
4	Chapter 4: Electromagnetics	10 Hrs	
	Magnetic Fields:		
	Analysis Model: Particle in a Field (Magnetic), Motion of a Charged Particle in		
	a Uniform Magnetic Field, Applications Involving Charged Particles Moving in		
	a Magnetic Field, Magnetic Force Acting on a Current-Carrying Conductor,		
	Torque on a Current Loop in a Uniform Magnetic Field,		

The Biot–Savart Law, The Magnetic Force Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter

Faraday's Law:

Faraday's Law of Induction, Motional emf, Lenz's Law, Induced emf and Electric Fields Generators and Motors, Eddy Currents

(Text 2 Page No 868-969)

Text Book:

- 1. David A Bell, "Electronics Devices and Circuits", Fifth Edition, Oxford University Press.
- 2. Serway and Jewett, "Physics for Scientists and Engineers-with Modern Physics", 9th Edition, CENGAGE learning. 2014

References:

- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH
- 2. R P Feynman, Robert B Leighton, Matthew Sands, The Feynman Lectures on Physics Vol-II, Norosa Publishing House (1998).
- 3. Ben G Streetman, Solid State Electronic Devices, Prentice Hall, 1995

BACK

Prog	ram: Bachelor of Engi	neering	Semester - I		
Cour	se Title: Engineering I	Mechanics	Course Code: 15ECVF1	01	
L-T-P	: 4-0-0	Credits:4	Contact Hrs: 4hrs/wee	k	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 50		Exam Duration: 3 hours	s	
		Unit I			
1 Chapter 1: Overview of Civil Engineering			04 hrs		
	Evolution of Civil Er	ngineering			
	Specialization, scop	e and role.			
	Impact of Civil Engi	neering on			
	National economy,	environment and social & cultural	fabric.		
	Challenges and Opp	portunities for Civil Engineers			
	Civil Engineering Ma	arvels, Future challenges, Higher e	ducation and Research.		
2		r concurrent force system		12 hrs	
		ineering Mechanics:			
		– Particle, Continuum, Body, Rig			
		of force and its elements; La			
		of forces, Principle of tran			
		ton's laws of motion. Classification	-		
	=	nar concurrent force system: De			
		· · ·	ution of a force, Equilibrium, Equilibrant, Formulae for		
		nt of forces and resolution of a force. Numerical problems on			
	resultant of forces.				
		anar concurrent force system:	hadu diagnama lamia'		
		ibrium, Action & Reaction, Free			
3		I problems on equilibrium of force	5.	05 hrs	
3		r non-concurrent force system e system: Moment, moment of a	forco counto moment	05 1115	
		acteristics of couple, Equivalent	· · ·		
		s on moment of forces and couple			
		gnons principle of moments, Resu			
		stems and numerical problems.			
		Unit II			
4	Chapter 4: Equilibr	ium of a force system (Chapter 3	contd)	5 hrs	
	Conditions of equi	librium, types of support and le	oading for a statically		
		Reactions at support connections,	•		
	•	systems and support reactions for	a statically determinate		
	beam.				
5	Chapter 5: Static Fr			8 hrs	
		of friction, definition, limiting			
		llomb friction, angle of friction and	•		
	of friction. Wedge a	nd belt friction theory. Derivation	of belt friction formula.		

	Numerical problems on, impending motion on horizontal and inclined planes (including connected bodies); wedge friction; Ladder friction and Belt friction.	
6	Chapter 6: Simple Stress and Strain Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress – Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics. Unit – III	6 hrs
		-
7	Chapter 7: Centroid of Plane Figures Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.	5 hrs
8	Chapter 8: Second moment of area (Plane figures) Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.	5 hrs
Text	Book:	
1.	Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Compar York, 1988.	ny, New
2.	Bhavikatti, S.S., and Rajasshekarappa K.G., Engineering Mechanics, 3Ed., Ne International Pub. Pvt. Ltd., New Delhi, 2008.	ew Age
	Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Compar Delhi, 2003.	-
	Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publication Delhi, 2006	ns, New
Refe	rences:	
-	 Jagadeesh, T.R. and Jayaram, <i>Elements of Civil Engineering</i>, Sapna Book Bangalore, 2006. 	House,
	 Ramamrutham, S., Engineering Mechanics, Dhanpat Rai Publishing Co., Nev 1998. 	v Delhi,
3	3. Singer, F.L., <i>Engineering Mechanics</i> , 3 rd edition Harper Collins, 1994.	
4	 Timoshenko, S.P. and Young, D.H., <i>Engineering Mechanics</i>, 4th edition, McG. Publishing Company, New Delhi, 1956. 	raw Hill
	 Irving H Shames, Engineering Mechanics, 3rd edition, Prentice-Hall of India F New Delhi- 110 001, 1995. 	Pvt. Ltd,

Pro	gram: Bachelor of Engin	eering	Semester - I	
Cou	rse Title: C Programmin	g for Problem Solving	Course Code: 18EC	SP101
L-T-	P: 0-0-3	Credits: 3	Contact hrs: 6 Hrs	/week
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Tea	ching :	Tutorial/Practical: 84hrs	Exam Duration: 3	Hrs
1	1 Introduction to Problem Solving		3 hrs	
	Introduction to algorit	hms / flowcharts and its notations,	top down design,	
	elementary problems.			
2	Basics of C programmi	ng language		15 hrs
	Characteristics and use	es of C, Structure of C program, C T	Tokens: Keywords,	
	Identifiers, Variables,	Constants, Operators, Data-types,	Input and Output	
	statements.			
3	Decision Control State	ments		
	Conditional branching	statements: if statement, if else	statement, else if	
	ladder, switch staten	nent, unconditional branching st	atements: break,	
	continue.			12 hrs
	Introduction to Debug			
	Introduction to Test Dr	iven Programming.		
4	Iterative Statements			10 hrs
	while, do while, for, ne	sted statements		
5	Functions			10 hrs
		n declaration, definition, call, re	eturns statement,	
		functions, introduction to macros.		
	Introduction to Coding	Standards		
6	Arrays and Strings	·		15 hrs
		ion, Accessing elements, Storing		
	-	imensional array, Operations on	two dimensional	
	arrays,			
-	Introduction to Code Optimization and refactoring			00 5-0-
7	Pointers			08 hrs
		g pointer, pointer variables, point	•	
	, , ,	guments to functions using point	ers, pointers and	
0	arrays, passing an arra			
8	Structures and Unions		ictures Unions	05 hrs
	mitroduction, passing s	tructures to functions, Array of stru	ictures, Unions	

Text Books

- 1. R.G.Dromey, How to Solve it by Computer, 1ed, PHI, 2008.
- **2.** Yashvant Kanetkar, Let us C ,15th ed, BPS Publication, 2016.

Reference Books:

- 1. B W Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B S Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

Program: Bachelor of Engineering Semester - I				
Course Ti	Course Title: Basic Electrical Engineering Course Code: 18E		Course Code: 18EE	EF101
L-T-P: 3-0-	-0	Credits: 3	Contact: 3hrs/wee	k
ISA Marks	s: 50	ESA Marks: 50	Total Marks: 100	
Teaching	: 40 Hrs		Exam Duration: 3 I	Hrs
		Unit-I		
	Overview of Ele	ctrical Engineering		
		scope & role, impact of Electrica	l Engineering on	
1	-	ny, environment, Sources of generat		02 hrs
	challenges and	opportunities for electrical eng	gineers, electrical	
	engineering mai	vels, future challenges.		
	DC Circuits			
2	Voltage and cur	rent sources, Kirchoff's current and	voltage laws, loop	
2	and nodal analysis of simple circuits with dc excitation. Time-domain		05 hrs	
	analysis of first-	order RL and RC circuits.		
	AC Circuits			
	Representation	of sinusoidal waveforms, peak and i	ms values, phasor	
3	representation, real power, reactive power, apparent power, power			08 hrs
5	factor. Analysis	of single-phase series and parallel	R-L-C ac circuits.	00 111 3
	Three-phase balanced circuits, voltage and current relations in star and			
delta connections. power measurement using two watt meters				
Unit-II				
	Electrical Actua			
	-	principles, Solenoid, Relays, classi		
4	-	otors-shunt, series, compound, se		9 hrs
		Speed Control, Stepper Motors, B	,	
	-	motor, Characteristics and applica	tions, selection of	
	motors for various applications.			
		i cs (Text1, chapter 45)		
		yristor, Some thyristor circuits, Limit		
F		thyristor in practice, The fully	-	6 hrs
5		DC inversion, Switching devices in	-	6 hrs
	-	networks, The three-phase fully cor		
		uction motors, Soft-starting induct witched-mode power		
	DC CONVEISION S	witcheu-moue power		

	Unit-III		
	 Electrical Wiring, Safety and protection(Ref :Text3-page 1 to 10) Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards. 		05 hrs
	7	Batteries: Basics of lead acid batteries, Lithium Ion Battery , Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing. Numericals.	05 hrs
Text	t Bool	ks	
1.	Hugł	nes, Electrical & Electronic Technology, 8th , Pearson Education, 2001	
2.	PCS	en, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Pub	olications
3.	Gilbe	ert M Masters, Renewable and efficient Electrical Power systems, Publ	ished by
	John	Wiley & Sons 2004 edition	
4.	Fran	k D. Petruzella, Electric Motors and Control Systems, McGraw Hill E	ducation
	Priva	ate Limited 2009 Edition	
Ref	erenc	e Books:	
1.	DCI	Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications	
2.	Davi	d G Alciatore and Michel B Histand, Introduction to Mechatror	nics and
	Mea 2005	surement Systems, 3rd, Tata McGraw Hill Education Private Limited, Ne	w Delhi.,
2	Vinc	ant Dal Tara Electrical Engineering Eurodementals 2nd edition Prontice U	all India

3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

BACK

Program: Bachelor of Engineering Se				Semester - I		
Course Title: Design Thinking for Social Innovation				Innovation	Course Code: 20EHSP101	
L-T-P: 0-1-1 Credits:			Credits:	2	Contact Hrs: 4hrs/week	
ESA Marks: 80 ISA Mark			ISA Mar	ks: 20	Total Marks: 100	
Teac	hing H	lrs:	Tutorial	/Practical: 56 hrs	Exam Duration: 3 hrs	
Module Topics			Assignments	Support activities / Tools		
KNOWLEDGE, TOOLS & DEVELOPMENT	Course sensitization		social ory.com ion and Social ICS) Course Project, Project, ments) ew Self	class. (Background information abo Akshaya patra au the Social Cuase it addressing) • Brainstorming	ial to Innovation Discussion on the behavioural blocks. • Introducing oneself with three Adjectives- Appreciating diversity and discovering self • Group Formation	
	Create Mindsets	Seven Mindsets: 1. Empathy (Example of The E the Puppies) 2. Optimism	Boy and	 Reading assignments Handout on " Crea Mindsets" 	• (How to train the Dragon? Common Video for all the mindsets)	

	 (Person Paralyzed waist down / Glass Halh full Half Empty) 3. Iteration (Thomas Alva Edison) 4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched) 		•	Watching in Class TED Talk on "How to build youir Creative Confidence by David Kelley – IDEO Founder)
Process of Social Innovation	Engage Community study and Issue Identification	Reading assignments • Handout on Community Study and Issue Identification Issue Identification Issue • Case Study on "EGramSeva" • Case Study on "Janani Agri Serve" Class Presentations • Initial observations being made by the group ((Literature Survey of Places Places of Hubli- Dharwad) www.readwhere.co m	•	Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective

	 Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge 	templates with the help of sample case study
 2. Inspiration Plan for the Research Development of Interview guide Capture your Learnings 	PEER REVIEWReading assignments• Handout on Overview of InspirationClass Presentations• Entirety of the Social Issue• Entirety of the Social Issue• Identification of the Stake Holders (Examples on Fluoroscent Curtain and Students' Punctuality for Class)• Interview Questions (Role Play on Interview with Stakeholders)• Interview Questions (Role Play on Interview with Stakeholders)• Category wise Learnings captureUse template 2: Plan your Research TemplateTemplate3. Development of Interview Guide Template 4. Capture your Learning	 Familiarization of the respective templates with the help of sample case study
 3. Ideation 3.1 Synthesis Search for meaning Create "How might we" question 	 Reading assignments Handout on Overview of Ideation-Synthesis Class Presentations Create insights 	 Familiarization of the respective templates with the help of sample case study

	 "How might we" questions Use template 5: Create Insights Template 6: Create "How Might We' Questions 	
 3.0 Ideation 3.2 Prototyping Generate Ideas Select Promising Ideas Determine what to prototype Make your prototype Test and get feedback 	 Reading assignments Handout on Overview of Ideation- Prototyping Class Presentations Story board- demonstrating the possible solutions Use template 7: Select your best ideas Template 8 : Determine what to prototype 	 Brain storming Familiarization of the respective templates with the help of sample case study Activity on Risk management Activity on Resource management Structure building games
 4.0 Implementation Create an action plan Community Partners (if any) Budgeting & Fundraising Peer to Peer Crowd Funding Giving Kiosks Donation Envelop Funding Marathons/ Walkathons Conducting Yoga Classes www.causevox.com / 	 Reading assignments Handout on Overview of Implementation Class Presentations Pilot implementation plan with required resources and Budget indicating stake holders & their engagement 	 Familiarization of the respective templates with the help of sample case study

 Ethical concerns Launch your solution Feedback (Impact) 		
5.0 Reflect	Reading assignments	• Familiarization of
Reflection of the overall	Handout on Overview	the respective
learning by the students	of students Reflection	templates with
	Use template 9:	the help of
	Reflection on the Process	sample case study
	Class Presentations	
	Final Presentation- After	
	Implementation	

<u>BACK</u>

Program: Bachelor of Engineering			Semester - I	
Course Title: Applied Physics Lab			Course Code: 21EPHP101	
L-T-P: 0-	·0-1	Credits : 1	Contact Hrs.: 02 Hrs/Week	
ISA Mar	ks: 80	ESA Marks: 20	Total Marks: 100	
Teachin	g Hrs:	Tutorial/Practical: 28hrs	Exam Duration: 3 Hrs.	
		Experiments	•	
1.	Four probe method			
2.	V-I characteristics of p-n junction diode			
3.	Zener diode characteristics			
4.	Hysteresis loss			
5.	Transistor characteristics			
6.	Measurement of dielectric constant			
7.	Resonance frequency of LCR circuits			
8.	Study of frequency response of passive components			
9.	Calibration of thermocouple			
10.	Calibration of electrical meters			

BACK

II Semester

Pro	gram: Bachelor of Engine	ering	Semester - II		
			Course Code: 18EMAB10	2	
L-T-P: 4-1-0		Credits: 05	Contact Hours: 6hrs/wee		
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50		Tutorial/Practical: 28hrs	Exam Duration: 3hrs		
	0	Unit-I			
	Partial differentiation				
1	Partial differentiation				
T	Function of several variables, Partial derivatives, Level curves, Chain rule, Errors and Approximations. Extreme value problems. Lagrange's multipliers.				
	Double integrals		Lagrange 5 multipliers.		
	-	ngular and polar coordinat	os Chango the order of		
2	-	ariables, Jacobian. Applicatio		08 hrs	
	0 0	blems, application of double	U		
		Unit-II			
	Triple integrals				
3					
5	Application of Triple inte			07 hrs	
	Calculus of Vector Fields	-			
	Vector fields, Gradient and directional derivatives. Line and Surface integrals.				
4	Independence of path and potential functions. Green's theorem, Divergence				
-	of vector field, Divergence theorem, Curl of vector field. Stokes theorem.				
		iple integrals, Vector calculu			
		Unit III			
	Differential equations of				
	(a) Linear differential equations of second and higher order with constant				
	coefficients The method of Variation of parameters. Initial and boundary value				
	problems.				
5	(b) Applications of second order differential equations-Newton's 2 nd law,				
	electrical circuits, Simple Harmonic motion. Series solution of differential				
	equations. Validity of Series solution of Differential equations.				
	Matlab: application of di	fferential equations			
Text Books :					
1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010					
Reference Books:					
		ison, Calculus Single and Mu	ltivariable. 4ed. Wilev India	a. 2009.	
 Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010 					
	·····, •••	<u> </u>	. ,	BACK	

BACK

Pro	ogram: Bachelor of Engi	neering	Semester - II	
Со	Course Title: Engineering Chemistry C		Course Code: 15ECHB102	
L-T	L-T-P: 3-0-0 Credits: 03 Contact Hours: 3hrs/we		veek	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теа	Teaching Hours: 40 Exam Duration: 3hrs			
		Unit-I		
1	Chemical Bonding Introduction, Ionic bond, factors influencing the formation of Ionic bond: Ionization energy. Electron affinity & electro negativity and properties of Ionic compounds. Covalent bond: Valence Bond theory & Molecular Orbital theory – formation of hydrogen molecule, factors influencing the formation of covalent bond, polar and non-polar covalent bond, dipole moment, problems on calculation of percentage of Ionic character and properties of covalent compounds, Co-ordinate bond: formation of hydronium ion and ammonium ion.			
2	Electrochemical Energy SystemsElectrode potential, Nernst equation, formation of a cell; Referenceelectrodes – Calomel electrode, Determination of electrode potential,numerical problems on E, $E_{cell} \& E^{0}_{cell}$.Batteries: Classification, Characteristics, Lead - acid, Lithium ion battery. Fuelcells - Methonol-O2 fuel cell.			06 hrs
3	PolymersIntroduction, polymerization; mechanism of polymerization taking ethyleneas an example. Determination of molecular weight of a polymer – numericalproblems.Commercial polymers - Plexi glass, PS, polyurethane.Polymer composites: Carbon fiber and Epoxy resin – synthesis, propertiesand applications.Introduction to conducting polymers, mechanism ofconduction in poly acetylene and applications.			06 hrs
		Unit-II		
4	electroplating. Factors Numerical problems of acid cyanide bath. Elec	ological importance. Electro s affecting nature of electrode on throwing power, Electropla ctro less plating, advantages of o less plating of Cu and	eposit, throwing power, ating process of gold by electro less plating over	04 hrs

0	KLE Technological	
KLE TECH	University Creating Value, Leveraging Knowledge	

-				
	Wafer Technology			
5	Introduction, physical and chemical properties of silicon. Purification of			
	silicon; chemical vapor deposition (CVD) process, zone refining process.			
	Crystal growth; preparation of single crystal silicon by Czhochralski crystal			
	pulling technique – numerical problems. Crystal slicing and wafer	09 hrs		
	preparation.			
	Fabrication process: thermal oxidation, diffusion, ion implantation -			
	numerical problems, epitaxial growth, masking and photolithography, wet			
	etching, dry etching.			
	Material Chemistry			
	Liquid Crystals – Types of liquid crystals, applications of Liquid Crystal in			
6	Display system. 03 hr			
	Fluorescence and Phosphorescence – Jablonski diagram, Thermoelectric and			
	Piezoelectric materials – meaning, properties and applications			
	Unit-III			
	Instrumental methods of measurement			
	Advantages over conventional methods. Electro analytical methods:			
7	Potentiometer - principle, methodology and applications. Optoanalytical	04 hrs		
/	methods: Colorimeter - Principle, methodology and applications.	04 111 3		
	Spectral methods of analysis : UV – Spectrophotometer - Instrumentation			
	and applications			
	Environmental Chemistry:			
	Water: Sources and ill effects of water pollutants – fluoride and nitrate;			
	determination of total hardness of water by EDTA method – numerical			
8	problems. ,	04 hrs		
	Sewage: Determination of Biological Oxygen Demand by Winkler's method –			
	numerical problems and determination of Chemical Oxygen Demand –			
	numerical problems.			
Тех	t Books :			
1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009,				
	New Delhi.			
2.	A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dha	npat Rai		
	Publications, 2006, New Delhi			

Reference Books:

- 1. Text book of Inorganic Chemistry, P.L.Soni, Sultan Chand, 1999, New Delhi.
- 2. Hand book of batteries, David Linden, Thomas B Reddy, 3rd edition Mc Graw Hill publications, 2001, New York.
- 3. Polymer Science, 6th Edition, Gowariker V.R., Viswanathan N.V., Sreedhar J., New Age International (P) Ltd, 2007, New Delhi.
- 4. Solid State Devices& Technology, 4thEdition, V.Suresh Babu, sanguine Technical Publishers, 2005, Bangalore.
- 5. Material Science & Engineering: An Introduction, 9th Edition, Calister William D, John Wiley and sons, 2007, New York.
- 6. Instrumental methods of Chemical nalysis, 5th Edition, Gurudeep R Chatwal, Shan K Anand, Himalaya Publishing House Pvt. Ltd, 2010, Mumbai.
- 7. VLSI Technology, 2nd Edition, S.M.Sze, McGraw Hill Series in electrical and computer engineering, 1998, New York.

Program: Bachelor of Engineering Semester - II					
Cou	rse Title: Problem Solvir	ng with Data Structures	Course Code: 18EC	SP102	
L-T-F	L-T-P: 0-0-3 Credits: 3 Contact: 6 hrs/we				
ISA I	Marks: 80	ESA Marks: 20	Total Marks: 100		
Теас	hing hrs :	Tutorial/Practical: 84hrs	Exam Duration: 3 I	Irs	
	Pointers, Structures and Files				
1	Recap of basics: Point	ters ,Structures; Self-referential s	tructures, dynamic	12 hrs	
	memory management	Files – File manipulation programs	S		
	Stacks and Recursion				
2	Stack: Definition, Operation	ations, Stack ADT Implementation	of stack operations.	16 hrs	
2	Applications of stack.			10 nrs	
	Recursion- Need for Re	cursion and problems on Recursic	on.		
	Queues				
3	Queue: Definitions of L	inear, Circular queues, Queue AD	Linear and circular	16 hrs	
Э	queue operations Definition and working of Priority queue, Double ended				
	queue; Applications of queues.				
	Lists				
4	Concept of lists and dynamic memory management lists, definitions and				
4	representations: singly, doubly, circular lists. Dynamic Implementation of lists				
	and its operations, Applications of linked lists				
	Binary trees				
5	Binary Tree: Definition, Terminology and representation, Tree Traversals both				
	recursive and iterative.	Binary Search Tree and its application	itions.		
Text	Books				
1	 Data Structures with 	C Seymour Lipschutz, Schaum's	Outline Series		
2	2. Data Structures Using C and C++ Langsam and Tanenbaum, PHI Publication				
6	3. Data Structures Through C Yashavant P Kanetkar, BPB Publication				
Refe	rence Books:				
1	L. Data Structures, Algo	orithms and Applications In C++	Satraj Sahani		
2. Data Structures and Algorithms Made Easy – Narshiman Karumunchi, Career Mo					

Program: Bachelor of Engineering Semester - II					
Cours	Course Title: Engineering Exploration Course Code: 15EC			CRP101	
L-T-P:	L-T-P: 0-0-3 Credits: 3 Contact Hrs.: 6hrs		/week		
ISA M	arks: 80	ESA Marks: 20	Total Marks: 100		
Teach	ing Hrs:	Tutorial/Practical: 84hrs	ESA Exam Duratio	n: 3 hrs	
No		Content		Sessions	
1	Introduction to Eng	Introduction to Engineering and Engineering Study			
2	Role of Analysis in E	2			
3	Data Analysis Graph	2			
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering			5	
-	Design	5			
5	Project Managemer	nt		1	
6	Sustainability in Eng	gineering		2	
7	Ethics			1	
8	Modeling, Simulation	1			
9	Platform based development : Arduino			3	
9	Course Project			3	
Reference Books:					

1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)

2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter		Weightage in
No	Name	percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10
5	Basics of Engineering Design	
5	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5

9	Modelling, Simulation and Data Acquisition using Software	
<u> </u>	ТооІ	-
10	Platform Based Development: Arduino	-
11	Course Project	40

<u>BACK</u>

Program: Bachelor of Engi	neering	Semester - II		
Course Title: Basic Electror	nics	Course Code: 18EECF10	101	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/w	veek	
ISA Marks: 50	5A Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 50		Exam Duration: 3 Hrs.		
	Unit-I			
Chapter 1: Trends in Electr	onic Industries: Introduction,	Roadmap of electronic		
sector, scope and oppor	tunities in various segment	s of electronics (i.e.,		
Consumer, Telecom, IT,	Defense, Industrial, Medica	al and Automobiles),	03	
Government and private	sectors, Growth profile of	Electronic industries,		
Standards and PoliISAs, Ele	ctronic System Components.			
Chapter 2: Basic Compone	ents, Devices and Applicatior	ns: Diode: PN junction		
characteristics; modeling a	s a circuit element, ideal and	practical diode. AC to		
DC converter: Half wave an	d full wave rectifier (centre tap	and bridge), capacitor	10	
filter and its analysis, nur	nerical examples. Zener diod	e and its applications	10	
(Voltage reference and vol	tage regulator). Realization of	simple logic gates like		
AND and OR gates.				
Chapter 3: Transistor: BJT	, transistor voltages and cur	rents, Signal amplifier		
(Fixed bias, Collector base	bias, Voltage divider bias, CE o	configuration). DC load		
line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic			07	
(DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two				
Stage RC-coupled Amplifier	·).			
	Unit-II	1		
	: Number systems: Decima		14	
	ems, Conversions, Binary Op			
•	ber systems. Logic gates: Real			
	s (AND, OR, NOT), Realization			
	algebra: Theorems and po			
•	of logical expressions, Kar	-		
•	e Boolean Expressions (2 Varia			
	dder and Full Adder, Parallel A	_		
• •	nplifier: OPAMP characteristic	· · · //	06	
	ications: Inverting amplifier, N	-		
	ion, Differentiation, Adder,	Subtractor, ZCD and		
Comparator.				
	Unit-III	<u> </u>		
•	n Systems: Basic block diagr		07	
	n. Amplitude modulation: Tim	•		
Frequency-Domain descrip	tion. Generation of AM wave:	square law modulator.		

Detection of AM waves: envelope detector. Double side band suppressed carrier				
modulation (DSBSC), Generation of DSBSC wave : balanced modulator, Super				
heterodyne principle.				
Chapter 7: Linear Power Supply, UPS & CRO: Working principle of linear power	03			
supply, UPS and CRO. Measurement of amplitude, frequency and phase of a				
given signal.				
Text Book:				
1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004				
2. K.A Krishnamurthy and M.R. Raghuveer, Electrical, Electronics and Computer				
Engineering for SISAntist and Engineers, 2, New Age International Publishers,	2001			
3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999				
References:				
1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 200	0			
2. Morris Mano, Digital logic and Computer design , 21st Indian print Prentice H	-all India,			
2000				
3 Floyd Digital fundamentals 3 Prentice Hall India 2001				

- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. Boylestead Nashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. Ramakant Gaikawad , Operational Amplifiers & applications, PHI, 2000

Program:	Program: Bachelor of Engineering			Semester - II	
Course Tit	le: Basic Mechar	nical Engineering		Course code: 15EMEF101	
L-T-P: 2-1-	0	Credits: 3		Contact Hrs: 4hrs/week	
ISA Marks: 50		ESA Marks: 50		Total Marks: 100	
Teaching H	Irs: 50	Tutorial/Practical: 2	8hrs	Exam Duration: 3 hrs	
Chapter	Co	ontents	Hours	Tutorial	Sessions
		UNIT	I		
1	Introduction	to Mechanical	2	Visit to Workshop	1
	Engineering:			and Machine Shop,	
	Definition	of engineering,		Tools, Safety	
	Mechanical En	gineering, Branches		Precautions	
	of Mechanical	Engineering, Who		Video presentations	
	are Mecha	nical Engineers?,			
	Mechanical E	ngineers' top ten			
	achievements.				
2	Manufacturing	Engineering: Basics	8	Demonstration on	5
	of Manufacturi	ing		working of Lathe,	
	What is manuf	acturing?, The main		milling, drilling,	
	manufacturing	sectors, The		grinding machines	
	importance	of the main		Demonstration on	
	manufacturing	sectors to the Indian		Welding (Electric	
	economy, Scale	es of production		Arc Welding, Gas	
	Classification	of manufacturing		Welding, Soldering)	
	Processes.			Demonstration and	
	Advances in I	Manufacturing: CNC		Exercises on Sheet	
	machines, M	Aechatronics and		metal work.	
	applications			Visit to Learning	
				Factory	
		UNIT	11		
3	Design Eng	ineering: Power	6	Design Problems	5
	Transmission E	lements		like <u>a moving</u>	
	Overview			<u>experience</u> ,	
	Design Applicat	tion:		aluminium can	
	Belt Drives.	Types, Length of		crusher	
	Belt. Velocit	y Ratio, Initial		Video presentations	
	Tension. Rat	io of Tensions.			
	Power Trans	mitted, Numerical			
	Problems.				

	Gears. Spur Gear, Rack and			
	Pinion, Worm Gear, Bevel Gear,			
	Helical Gears. Speed, Torque,			
	and Power in Gear pair. Simple			
	and Compound Gear trains.			
	Numerical Problems.			
	• Ball and Roller Bearings, Types,			
	Applications.			
4	Thermal Engineering 1: Prime	4	Case study on	1
	Movers.		power requirement	
	Internal Combustion Engines:		of a bike, car or any	
	Classification, IC engine parts, 2		machine	
	stroke SI and CI engine, 4 Stroke SI		Video presentations	
	and CI Engine, PV diagrams of Otto			
	and Diesel cycles, Comparison of 2			
	stroke and 4 stroke engine,			
	comparison of CI and SI engine,			
	Problems on Engine Performance,			
	Future trends in IC engines.			
	UNIT III			
5	Thermal Engineering 2: Thermal	5	Case study on	1
	Systems' Applications		selection of various	
	Refrigeration system, Air		thermal systems	
	conditioning system, Pumps,		Video presentations	
	Blowers and Compressors,			
	Turbines, and their working			
	principle and specifications.			
Text Book	(S:			
1				

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,–Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology - Vol I & II, 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

Program: Bachelor of Engineering Semester - II			
Course Title: Professional Communication		Course Code: 15EHSH101	
L-T-P: 1-1-0	Credits: 2	Contact Hrs.: 3hrs/week	
ESA Marks: 50	ISA Marks: 50	Total Marks: 100	
Teaching Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
	Content		Hrs
Chapter No. 1. Basics- English Course Introduction, Explana necessity of grammar in error	ation of template mix-ups	with correct usages &	9 hrs
Chapter No. 2. Vocabulary and grammar Vocabulary, Word Formation and Active and Passive Voice			6 hrs
Chapter No. 3. Bouncing Practice Definition and types of bouncing and its practice with examples, reading skills, free style speech. Individual presentation.			6 hrs
Chapter No. 4. Rephrasing and Structures Comprehension and Rephrasing, PNQ Paradigm and Structural practice			8 hrs
Chapter No. 5. Dialogues Introduction of dialogues, Situational Role plays,			3 hrs
Chapter No. 6. Business Communication Covering letter, formal letters, Construction of paragraphs on any given general topic.			9 hrs
 References: 1. Collins Cobuild Advanced Learner's English Dictionary 2. Raymond Murphy - Intermediate English Grammar, Cambridge University Press 3. Martin Hewings- Advanced English Grammar, Cambridge University Press. 			

<u>BACK</u>

Semester – III

Pro	gram: Bachelor of Engineer	ing	Semester - III	
	rse Title: Graph Theory and	-	Course Code: 15EMA	B204
L-T-	P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/w	eek
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теа	ching Hrs: 50		Exam Duration: 3hrs	;
		Unit –I		
1	Graph theory :			
	Definitions and examples of graph, Subgraphs, Components, Graph			
	Isomorphism, Vertex Deg	gree, Euler Trails and Circ	cuits, Planar Graphs,	
	Hamilton Paths and Cycles	, Graph Colouring and Chro	matic Polynomials.	10 hrs
2	Trees :			
	· · ·	xamples, Rooted trees and	•	
	•	aversals, sorting, spanning t	· •	
		ation and Matching- Dijk		
	algorithm, Minimum span	ning trees, Kruskal and prim	's algorithms.	10 hrs
	Unit –II			
3	Matrices and System of li	-	· · ·	
	•	inear equations and its solutions	· · ·	
	•	Rank of a matrix. Consisten		
	•	tem of equations by (i) D n method (ii) Iterative m		
		Eigen vectors of a matrix. La		
	-	ector by power method, Ap	• •	12 hrs
4	Vector space:			12 1110
•	•	ces- examples, Linear combi	nations Spanning sets.	
		Row space of a matrix, Lir		
		and dimensions, applicatio	-	
	a matrix. Sums and direct	sums, Coordinates, Applicat	ion case study.	08 hrs
		Unit –III		
5	Fourier Series:			
	Complex Sinusoids, Fourie	r series representations of f	our classes of signals,	
	Periodic Signals: Fourier Series representations, Derivation of Complex			
	Coefficients of Exponential Fourier Series and Examples. Convergence of			
	•	and phase spectra of a perio	• ·	
		oof): Linearity, Symmetry P	•	
		ime differential differentiati		
		ultiplication Theorem, Pars	seval's theorem and	
	Examples on these proper	ties.		10 hrs

Text Books

- 1. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education, 2005.
- 2. Discrete Mathematics and its applications., Kenneth H Rosen,Mcgrawhill,7ed,2011
- 3. Discrete and Combinanatorial Mathematics by Ralph P.Grimaldi, Pearson Education, Asia, Fourth edition-2002.
- 4. Grewal B. S., Higher Engineering Mathematics, 39th Ed., Tata McGRAW Hill, New Delhi, 2005.

Reference Books:

- 1. Seymour Lipschutz and Marc Lipson, Linear Algebra, Schaums outline.
- Theory and Problems of Combinatorics including concept of Graph Theory by V.
 K. Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995
- 3. Graph Theory with Applications to Engineering and Computer SISAnce by NarsinghDeo, PHI publications (1986).
- 4. Simon Haykin, Barry Van Veen, Signals and Systems, John Wiley, 2002.

10

Scheme for	End Sem	ester Asses	sment (ESA)

UNIT	8 Questions to be set of 20	Chapter numbers	Instructions
	Marks Each		
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	5	

Progra	am: Bachelor of Eng	gineering	Semester - III			
Cours	e Title: Discrete Ma	thematical Structures	Course Code:22ECAC20	1		
L-T-P:	3-1-0	Credits: 4	Contact Hrs: 5hrs/week			
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100			
Teach	ning Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3hrs			
		Unit –I				
1	Logic and Proofs					
	Propositional Log	ic, Applications of Propos	sitional Logic, Propositiona	I		
	Equivalences, Predicates & amp; Quantifiers, Nested Quantifiers, Rules of					
	Inference and Intre	oduction to Proofs.		10 hrs		
2	Functions and Rel	ations:				
	Functions, Relation	ons & their Properti	es, Representing Relations	,		
	Closures of Relation	ons, Equivalence relations a	ind Partial orderings.	6 hrs		
		Unit –II				
3	Counting:					
	The Basics of Counting, The Pigeonhole Principle, Permutations and					
	Combinations, Generalized Permutations & Combination, and Generating					
	Permutations & Combinations.					
4	Recurrence Relations:					
	Applications of Recurrence Relations, Solving linear Recurrence Relations					
	and Solving recur	rence relation using Genera	ating Functions.	6 hrs		
		Unit –III				
5	Groups:					
	Binary Operations	, Semi groups, Products 8	Quotients of Semi Groups	,		
	Groups, and Produ	uct & Quotients of Groups		4 hrs		
6	Number Theory :					
	Divisibility & Mod	ular Arithmetic, Primes and	d Greatest Common Divisors	,		
	Solving Congruence	ces and Applications of Con	gruences	4 hrs		
Text E	Books					
1.	Kenneth H. Rosen,	, Kamala Krithivasan, Discre	ete Mathematics and its Appl	ications,		
	8 th Edition, Tata M	Ic-GrawHill Publication, Jul	y 30, 2021.			
2.	Kolman, Busby an	d Ross, Discrete Mathema	tical Structures, 6 th Edition.,	Pearson		
	Publication Mar	8, 2023.				
Refer	ence Books:					
		Ramana B.V. Discrete an	nd Combinatorial Mathema	tics- An		
	Applied Introduction, 5th Edition, Pearson Publication, May 8, 2019.					
2	2. Basavaraj S Anami and Venakanna S Madalli, Discrete Mathematics – A Concept based approach, Universities Press, 2016					

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	

Pro	gram: Bachelor of Enginee	ring	Semester - III		
C οι	Irse Title: Computer Organ	ization and Architecture	CourseCode:22ECA	AC202	
L-T-	·P:3-0-1	Credits: 4	Contact Hrs: 5hrs/	week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теа	ching Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 l	nrs	
		Unit –I			
1	Computer Fundamentals:				
	Basic Concepts and Com	puter Evolution: Organization	and Architecture,		
	Structure and Function, A	Brief History of Computers, T	he Evolution of the		
	Intel x86 Architecture, Em	bedded Systems			
	Performance Issues:Two	Laws that Provide Insight: A	hmdahl's Law and		
	Little's Law, Basic Measu	res of Computer Performand	ce, Calculating the		
	Mean, Benchmarks and Sp	Dec.			
	A Top-Level View of Com	puter Function and Intercon	nection: Computer		
	Components, Computer	Function, Interconnection	Structures, Bus		
	Interconnection, Point-to-	Point Interconnect		04 hrs	
2	Computer System:				
	Memory: Computer Memory System Overview, Cache Memory Principles,				
	Elements of Cache Design, Semiconductor Main Memory, DDR DRAM				
	Input/Output: External De	evices, I/O Modules, Program	med I/O, Interrupt-		
	Driven I/O, Direct Memory	/ Access		06 hrs	
3	The Central Processing Ur	it:			
	Instruction Sets: Charac	teristics and Functions: Ma	achine Instruction		
	Characteristics, Types of O	perands, Types of Operations			
	Instruction Sets: Address	sing Modes and Formats: A	ddressing Modes,		
	Instruction Formats, Asser	nbly Language		06 hrs	
		Unit –II			
4	The Processor:				
	Processor Structure and	d Function: Processor Orga	inization, Register		
	Organization, Instruction (Cycle, Instruction Pipelining			
	Instruction-Level Parallelis	m and Superscalar Processors	: Overview, Design		
	Issues, Intel Core Microar	chitecture		08 hrs	
5	Parallel Organization:				
	Parallel Processing: M	ultiple Processor Organiza	tions, Symmetric		
	•	pherence and the MESI Proto	col, Multithreading		
	and Chip Multiprocessors			08 hrs	

Multicore	Computers:	Hardware	Performance	lssues,	Software	
Performanc	e Issues, Mu	lticore Orgai	nization, Hetero	geneous	Multicore	
Organizatio	n.					
•		Uni	it —III			

6	6 General-Purpose Graphic Processing Units:					
	Cuda Basics, GPU versus CPU, GPU Architecture Overview	04 hrs				
7	Control Unit Operation :					
	Micro-Operations, Control of the Processor, Case studies and Projects	04hrs				
Тех	kt Books:					
	1. William Stallings, Computer Organization and Architecture Design					
	Performance, 10 th Ed, Pearson Education, 2016.					
Re	ference Books:					
	1 John L. Honnossy and David A. Pattorson, Computer Architecture: A Quar	atitativo				

- 1. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5th Edition, Elsevier publication, 2017.
- 2. Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata McGraw Hill 2008

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5	4,5	Solve Any 2
	Q.No6	6	
III	Q.No7	7	Solve Any 1

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/batch
1.	Logisim Tool Demo	01
2.	Combinational Circuits (Half Adder, Full Adder, Decoder, Multiplexer)	01
3.	Building ALU	01
4.	1-bit RAM Cell and building bigger RAM	01
5.	Design and simulation of main memory organization	01
6.	Design and simulation of main memory organization(contd)	01
7.	Design and simulation of register organization	01

8.	Design and simulation of datapath for processor design.	01
9.	Design and simulation of datapath for processor design (contd)	01
10.	Comparative study of contemporary processors	01

<u>BACK</u>

Prog	ram: Bachelor of Engineer	ing	Semester - III			
Cour	se Title: Data Structures a	nd Algorithms	Course Code: 22ECA	C203		
L-T-P	2: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/w	veek		
ISA N	Marks: 100	ESA Marks: 00	Total Marks: 100			
Teac	hing Hrs: 50		Exam Duration: 3 hr	s		
		Unit –I				
1	Fundamentals of Algorithms and Problem Solving					
	Space and Time Comple	exities, Order of an algorith	m, Efficiency Analysis			
	of Stacks and Queue	s Revisited, Recursive D	efinitions, Recursive			
	Functions, Towers of Ha	noi, Backtracking, Recursion	n Vs. Iteration	8 hrs		
2	Hashing and Hash table	25				
	Direct Address Table, H	lash Table, Hash Functions,	Collision Resolution			
	Techniques.			4 hrs		
3	Graphs and Trees					
	Graphs, Computer Repr	Graphs, Computer Representation of Graphs, Trees, Tree Traversals, AVL				
	Trees, 2-3 Trees, Application of Binary Trees, Tries, DFS, BFS			8 hrs		
		Unit –II				
4	Sorting Techniques					
	Sorting, Bubble sort, Se	election Sort, Insertion Sor	t, Merge Sort, Quick			
	Sort, Heap Sort.			8 hrs		
5	Substring Search Algori	thms				
	Brute-force method,	Boyer-Moore Algorithm,	Knuth-Morris-Pratt			
	Algorithm, Rabin-Karp A	lgorithm		4 hrs		
6	Graph Algorithms					
	Union-Find Data Stru	cture, Shortest Path alg	gorithms, Minimum			
	Spanning Tree Algorithm	ns		8 hrs		
		Unit –III				
7	Problem Case Studies					
	Travelling Sales Person	Problem, Knapsack Problem	n, Fake Coin Problem,			
	Strassen's Matrix Multip	olication, Huffman Coding		5 hrs		
8	Limitation of Algorithm	Power				
	Undecidability, P and N	P Classes, P vs NP, NP-Hard,	, NP-Complete	5 hrs		
	-			-		

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.
- 2. HackerRank / CodeChef / SPOJ

UNIT	8 Questions to be set		Chapter	Instructions
	of 20 Marks	Each	Numbers	
I	Q.No1,	Q.No2,	1, 2,3	Solve Any 2
	Q.No3			
П	Q.No4,	Q.No5,	4,5,6	Solve Any 2
	Q.No6			
ш	Q.No7 7		7	– Solve Any 1
	Q.No8		8	

Scheme for End Semester Assessment (ESA)

Program: Bachelor of Engineering Semester - III					
Cοι	Course Title: Database Management System Course Code:22E0			CAC204	
L-T-	L-T-P: 4-0-0 Credits: 4 Contact Hrs: 4 hrs			/week	
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Теа	ching Hrs: 50		Exam Duration: 3	hrs	
		Unit –I			
1	Introduction and ER Mod	el:			
	Introduction to DBMS; [Data Models, Schemas and	Instances; Three-		
	Schema Architecture; Dat	abase Languages; Using High	-Level Conceptual		
	Data Models for Database	Design; An Example Database	Application; Entity		
	Types, Entity Sets, Attribu	ites and Keys, Relationship Ty	ypes, Relationship		
	Sets. Roles and Structural	Constraints; Weak Entity Type	es; Refining the ER		
		ing Conventions and Design Is	sues.	06hrs	
2	Relational Data Model an	-			
		s; Relational Model Constrain			
	, ,	ate Operations and dealing			
	violations; Unary Relational Operations: SELECT and PROJECT; Binary				
	Relational Operations: CARTESIAN PRODUCT, JOIN: Additional Relational			• • •	
•	Operations; Relational Database Design Using ER- to-Relational Mapping. 08hrs				
3	SQL: SQL Data Definition and Data Types; SQL constraints; DDL and DML				
	statements ; JOIN	Data Types; SQL constraint	S; DDL and DIVIL		
		Juarias DI /SOI		08hrs	
	operations; Complex SQL Queries, PL/SQL. 08hrs Unit –II				
4	Database Design:				
-		elines for Relation Sche	mas; Functional		
	0	rms Based on Primary Keys; Bo	,		
	Form.			09 hrs	
5	Introduction to Transactio	on Processing:			
-		n Processing; Transactions and	System concepts:		
	Desirable Properties of Transactions; Characterizing Schedules Based on-				
	Recoverability, Serializibilt			09 hrs	
		Unit –III		l	
6	Concurrency Control Tech	niques:			
	-	Locking Techniques for Con	currency Control,		
		d Starvation, Concurrency cont	•		
	stamp Ordering.			05 hrs	

7 Database Security:

Introduction to DB Security Issues, Discretionary Access Control, Mandatory Access Control And Role-Based Access Control, SQL Injections, SQL Attacks

05 hrs

Text Books:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011.
- 2. ShashankTiwari , Professional NOSQL, 1st Ed, Wrox, 2011.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Ed, McGraw Hill, 2007.
- 2. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
ш	Q.No7	6	Solve Any 1
	Q.No8	7	Solve Ally I

Program: Bachelor of Engineer	Semester - III	
Course Title: Data Structures a	Course Code: 22ECAP202	
L-T-P: 0-0-2	L-T-P: 0-0-2 Credits: 2	
ISA Marks: 80	Total Marks: 100	
Teaching Hrs:	Tutorial/Practical: 56hrs	Exam Duration: 3 hrs

Tentative plan of lab Implementation

Week No	Lab Assignments
1	
2	03 Programming Assignments on Stacks, Queues, Lists, Files
3	
4	01 Assignment on Fundamentals of Algorithms
5	01 Assignment on Trees
6	
7	02 Assignments on Graphs
8	01 Assignment on Sorting
9	01 Assignment on Searching
10	01 Assignment on Sorting and Searching Applications
11	
12	03 Assignments on Graph algorithms
13	
14	Open Ended Experiment

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.
- 2. HackerRank / CodeChef / SPOJ

<u>BACK</u>

Program: Bachelor of Engineering Semester - III				
Cou	urse Title: Introduction to A	1	Course Code: 22ECA	C205
L-T-P: 2-0-0 Credits: 2 Contact Hrs: 2 h		Contact Hrs: 2 hrs/v	/week	
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 30 Exam Duration: 3hrs			S	
		Unit –I	I	
1	What is AI? Applications a	nd Examples of Al		
	Introducing AI, what is AI?	Impact and Examples of AI,	Application Domains	
	for AI, Some Applications of	of AI.		5 hrs
2	AI Concepts, Terminology,	and Application Areas		
	Cognitive Computing (Per	ception, Learning, Reasoning	g), Terminology and	
	Related, Concepts Machi	ne Learning, Machine Learn	ing Techniques and	
	Training, Deep Learning			
	Neural Networks, Key F	ields of Application in AI,	Natural Language	
	Processing, Speech, Comp	uter Vision, Self-Driving Cars.		7 hrs
		Unit –II		
4	AI: Issues, Concerns and Ethical Considerations			
	Issues and Concerns around AI, AI and Ethical Concerns, AI and Bias, AI:			
	Ethics, Bias, and Trust, Jobs and AI, Employment and AI.			6 hrs
5	The Future with AI, and A	in Action		
	The evolution and future of	of AI, Future with AI, The AI L	adder - The Journey	
	for Adopting AI Successf	ully, Advice for a career in	AI, Hotbeds of AI	
	Innovation.			7 hrs
		Unit –III		
7	AI and Society			
	Introduction, A realistic vie	ew of AI, Discrimination / Bias	, Adversarial attacks	
on AI, Adverse uses of AI, AI and developing economies, AI and jobs.				5 hrs
Тех	t Books:			
		iction to artificial intelligence.		
Def		Learning, Mc Graw Hill, McGr	aw-Hill Science, 3rd e	dition.
ĸet	erence Books: 1 Rothman Denis Artific	ial Intelligence by Example: [)evelon machine inte	lligence
		artificial intelligence use cases	•	-

Scheme for End Semester Assessment (ESA)

Assessment	Weightage in Marks
ISA 1	20
ISA 2	20
Activity	10
Total	50

Program: Bachelor of Engineer	Semester - III	
Course Title: Database Applica	Course Code: 22ECAP201	
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80 ESA Marks:20		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42hrs	Exam Duration: 3 hrs

List of experiments/jobs planned to meet the requirements of the course. 4- Demonstration Introduction to RDBMS/Case study/ basic SQL commands. • Set theory, logical operators and aggregate functions. • Group by , Having clause, Views and index • Basics of PL/SQL. 5-Exercises • SQL queries on set theory, logical operators and join operations. • SQL queries queries on aggregate functions, group by and having clause. SQL queries on Views and nested query operations. • PL/SQL queries using triggers and cursors. • PL/SQL queries using procedures and functions. **3-Structured Enquiry** • Database Design 1-Open Ended • Database design & implementation Experiment Text Book: 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 7th edition, Pearson Education, 2012.

2. Steven Feuerstein, Bill Priby<u>I</u> Oracle PL/SQL Programming, 6th Edition, O'Reilly Media, 2014.

References:

1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.

2. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Evaluation: Students Assessment through ISA (80%) + ESA (20%)

Internal Semester		Assessment		Weightage in Marks
Assessment (80%)		Exercises		50
		Structured E	nquiry	20
		Open	Ended	10
		Experiment		
End Semester A	ssessment		ESA	20
(20%)				
			Total	100

Pr	Program: Bachelor of Engineering Semester - III				
Со	Course Title: Corporate Communications		Course Code: 22EHSC201		
L-1	L-T-P: 0.5-0-0 Credits: 0.5		Contact Hrs: 1 hr/week		
ISA	A Marks: 100	ESA Marks: NA	Total Marks: 100		
Те	aching Hrs: 16		Exam Duration: NA		
		Unit –I			
1	Communication Skills:				
	Tools of Communication, Li	stening, Body Language, Co	mmon Postures and		
	Gestures, Open and Closed	l Body Language, Body Lang	guage to be used in	4 hrs	
	Corporate Scenarios, Voic	e: Pitch, Pace, and Pause	, Verbal Language:		
	Positive & Negative Vocabu	lary, Corporate Conversatior	าร		
2	Presentation Skills:				
	Zero Presentation, Indivi	dual Presentations, and	feedback, Making	4 hrs	
	Presentations Interactive,	Types of Questions, Taking	off and Signing off	4 111 3	
	differently, Captivating your Audience, Corporate Presentations				
3	Spoken English:				
	Phonetic and Non-Phonet	ic Languages, Introduction	to IPA, Sounds in	4 hrs	
	English, Syllables, Word Stre	ess, Rhythm, Pausing, and In	tonation		
4	Written English:				
	Vocabulary Enhancement	Strategies, Root Words in	English, Grammar	4 hrs	
	Improvement Techniques,	Dictionary Usage, Similar	and Contradictory	4 111 5	
	Words				
Те	xt Books:				
	NA				
Re	Reference Books:				
	1. Diana Booher - Communicate With Confidence, Mc Graw Hill Publishers				
	2. Norman Lewis – Word Power Made Easy, Goyal Publishers				
	3. Cambridge Advanced Lea	arner's Dictionary, Cambridg	e University Press.		

Program: Bachelor of Engineering			Semester - III		
Cou	Course Title: Graph Theory and Calculus		Course Code: 15EMAB233		
L-T-P: 4-0-0 Credits: 04		Contact Hours: 4hrs/v	veek		
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	ching Hrs: 50		Exam Duration: 3hrs		
		Unit I			
	Graph theory:				
1	Definitions and examples of graph, Subgraphs, Components, Graph				
	• •	Degree, Euler Trails and Cir	· · ·	10 hrs	
		ycles, Graph Colouring and Chro	matic Polynomials.		
	Trees:				
	· · ·	s, examples, Rooted trees and	•		
2		er traversals, sorting, spanning	•	10 hrs	
	.	timization and Matching- Dij	•		
		spanning trees, Kruskal and prin Unit II			
	Differential Calculus	Onth			
3		dard functions of first and high	er orders. Taylor's and	05 hrs	
		pansion of simple functions for s	· •	05 1115	
	Partial differentiation	•	5		
4	Function of several v	variables, Partial derivatives, C	hain rule, Errors and	06 hrs	
	approximations		·		
	Integral Calculus				
5	Evaluation of integra	ls, properties, Beta and Gamr	na functions, relation	09 hrs	
5	between Beta and Gamma functions Approximate integration- Trapezoidal				
	rule, Simpson's 1/3 ru	le, Multiple integrals, simple p	roblems.		
		Unit III			
	Differential equations				
		ler and degree of equation, Solu			
	-	ial equations –variable separa	-	10 hrs	
6		itions, Bernoulli's equations, In	nitial value problems,		
	-	thod for initial value problem			
	• Differential equations of second and higher orders with constant				
.	coefficients.				
lext	Books	a and its annlications. Kosseth	H Docon Magrowhill 7	ad 2011	
	 Discrete Mathematics and its applications., Kenneth H Rosen, Mcgrawhill, 7ed, 2011 Discrete and Combinanatorial Mathematics by Ralph P.Grimaldi, Pearson 				
			y naipii r.uiiiiaiui, l	Caisoli	
L	Education, Asia, Fourth edition-2002.				

- 3. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001
- 4. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

Reference Books:

- 1. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 2. Theory and Problems of Combinatorics including concept of Graph Theory by V. K.Balakrishnan (Schaum's outline series), Mcgraw Hill, 1995
- 3. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo, PHI publications (1986).

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
11	Q.No4, Q.No5, Q.No6	3,4, 5	Solve Any 2 out of 3
111	Q.No7, Q.No-8	6	Solve Any 1 out of 2

Scheme for End Semester Assessment (ESA)

Semester - IV

Dre	gram: Racholor of Engineer	Semester - IV	Somostor IV		
	gram: Bachelor of Engineer	-	Semester - IV	440244	
Course Title: Probability & Statistics Course Code: 22EN					
	·P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/	/week	
	Marks: 50	ESA Marks: 50	Total Marks: 100		
Tea	ching Hrs: 50 hrs		Exam Duration: 3 h	irs	
		Unit –I			
	Description of data:				
1	Introduction: Data, Type of Variables, mean, weighted mean, median,			08hrs	
		Coefficient of variation, sk	ewness, Histogram,		
	Box plots, Normal Quantitl	e Qunatile plots			
	Probability:				
2		terpretation of probability v		06hrs	
		rule, Applications: Data Class	sification Methods -		
	Decision Tree Induction, Bayesian Classification.				
	R-tutorial : Introduction to Data handling ,Description of data graphically,			08 hrs	
	Histogram, Skewness, Boxplot, QQ-norm, Decision tree				
		Unit –II			
	Random variables	and Probability			
	•	Examples, Discrete and c			
3		to bivariate distribution,	, , ,	08 hrs	
	distribution, marginal distribution, covariance. Theoretical distributions:				
	Binomial, Poisson, Normal.				
	Statistical Inference I				
	Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified			00 h	
4	Sampling, Basic terminologies of testing hypothesis, Confidence interval,			08 hrs	
	Sample size determination, Hypothesis test for proportions, means(single				
	and differences), using P-value approach P tutorial: Probability distribution. Tosting of Hypothesis for proportions				
	R-tutorial : Probability distribution, Testing of Hypothesis for proportions,		08 hrs		
	means(single and differences) Unit –III				
Correlation and Regression5 hours					
	-	d regression, coefficient of	correlation Linear		
5	-	-	-	05 hrs	
	regression (ANOVA approach), Multiple linear regression, Logistic Regression.				
	Statistical Inference II				
6	Test for independence of attributes (m x n contingency table) Inference			05 hrs	
	•	e test procedure(Goodness o		05 1115	
			n nuj		

R-tutorial: Linear Regression with ANOVA approach, Multiple Regression **04 hrs** with ANOVA approach

Text Books

- J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.
- 2. Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, 1ed, PHI, 2000.

Reference Books:

- 1. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
- 2. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 3. Sheldon M.Ross ,Introduction to Probability and Statistics for Engineers and Scientists

UNIT	8 Questions to be set of 20	Chapter	Instructions	
	Marks Each	numbers		
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3	
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3	
ш	Q.No7	6	Solve Any 1 out of 2	
111	Q.No8	7		

Scheme for End Semester Assessment (ESA)

ISA Marks: 100ESA Marks: 0Total Marks: 100Teaching Hrs: 15Tutorial/Practical: 84hrsExam Duration:Module – 1Introduction to Microcontroller and Embedded System/ReadingMicrocontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.01 hHands on• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR Microcontrollers03 h/Reading• Introduction to the Narkers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembley Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.03 hHand on• Assembly programming on the hardware21 h	Program: Bachelor of Engineering Semester - IV			
ISA Marks: 100 ESA Marks: 0 Total Marks: 100 Teaching Hrs: 15 Tutorial/Practical: 84hrs Exam Duration: Module – I Introduction to Microcontroller and Embedded System Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family. 01 h Hands on • Introduction to the hardware, setup, familiarizations with the working of the hardware 03 h Keading • Architecture and Assembly Language Programming on AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembly Programming, Instruction, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program inAVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. 21 h Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set 21 h Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set 21 h Hand on • Assembly programming on the hardware </th <th colspan="4">Course Title: Microcontroller: Programming and Interfacing Course Code: 22E0</th>	Course Title: Microcontroller: Programming and Interfacing Course Code: 22E0			
Teaching Hrs: 15 Tutorial/Practical: 84hrs Exam Duration: Module – I Lecture /Reading Introduction to Microcontroller and Embedded System Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family. 01 h Hands on • Introduction to the hardware, setup, familiarizations with the working of the hardware 03 h Lecture AVR Architecture and Assembly Language Programming on AVR Microcontrollers 03 h Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. 03 h Instruction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. 21 h Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set 21 h Hand on<	L-T-P:1-0-3	Credits: 4	Contact Hrs: 7hrs/week	
Module – I Lecture /Reading Introduction to Microcontroller and Embedded System Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family. 01 h Hands on • Introduction to the hardware, setup, familiarizations with the working of the hardware 03 h Lecture AVR Architecture and Assembly Language Programming on AVR /Reading 03 h Introduction to the hardware. Setup, familiarizations with the working of the hardware 03 h Lecture AVR Architecture and Assembly Language Programming on AVR /Reading 03 h Introduction to the hardware. Introduction to AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. 21 h Hand on • Assembly programming on the hardware set of programs to be given on various instruction types/ instruction set 21 h • HLL Python programming on the hardware instruct	ISA Marks:	100 ESA Marks: 0	Total Marks: 100	
Lecture /ReadingIntroduction to Microcontroller and Embedded System Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.01 hHands on• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLecture /ReadingAVR Architecture and Assembly Language Programming on AVR Microcontrollers03 hSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Branch Instructions, MCU Control Instructions, Jump and RET Instruction, Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 h	Teaching H	rs: 15 Tutorial/Practical: 84hrs	Exam Duration:	
/ReadingMicrocontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.01 hHands on• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR /Reading03 hMicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction, Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Module – I		
Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.01 hHands on Electure• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLecture /ReadingAVR Architecture and Assembly Language Programming on AVR Microcontrollers03 hSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on e• Assembly programming on the hardware instruction set instruction set • HLL Python programming on the hardware03 hReviewReview I03 hModule -IILecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h	Lecture	Introduction to Microcontroller and Embedde	d System	
for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.01 hHands on exercise• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLecture /ReadingAVR Architecture and Assembly Language Programming on AVR Microcontrollers Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on • Assembly programming on the hardware instruction set • HLL Python programming on the hardware03 hReviewReview I03 hCurrent Module –II03 hLecture /ReadingAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h	/Reading	Microcontrollers and General Purpose	Microprocessors,	
for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.Hands on• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR Microcontrollers03 hSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on exercise exercise instruction set of programs to be given on various instruction types/ instruction set e HLL Python programming on the hardware03 hModule –IIModule –II04 hLecture (ReadingAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, O2 h		Embedded System Features, Choosing a micr	ocontroller, Criteria	01 hrs
Family.Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR MicrocontrollersAVR MicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware instruction set • HLL Python programming on the hardware Review03 hReviewReview I03 hModule -IIO3 hLecture /ReadingO4 R Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, O2 h		for choosing a microcontroller, Harvard a	nd Von Neumann	OT III S
Hands on• Introduction to the hardware, setup, familiarizations with the working of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR MicrocontrollersAVR Architecture and Assembly Language Programming on AVR MicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewModule –II10LectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Architecture, Introduction to AVR Microcontroller and Arduino		
Norking of the hardware03 hLectureAVR Architecture and Assembly Language Programming on AVR MicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 hModule -IIO3 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, O2 h		Family.		
working of the hardwareLectureAVR Architecture and Assembly Language Programming on AVR Microcontrollers/ReadingMicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 hUctureO3 hO3 h	Hands on	Introduction to the hardware, setup, famil	arizations with the	03 hrs
/ReadingMicrocontrollersSimplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hUndule -II03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h		working of the hardware		
Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hModule –IILectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h	Lecture	AVR Architecture and Assembly Language Programming on AVR		
(Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction, Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 hOdule -IIULectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h	/Reading	/Reading Microcontrollers		
format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive. Introduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hModule -II03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h		Simplified View of an AVR Microcontroller, Internal Architecture		
Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive.O3 hIntroduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hModule -II03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h	(Harvard) of AVR, Registers and Data Memory in AVR, Instruct		in AVR, Instruction	
Data Formats and Assembler directive.O3 hIntroduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.03 hHand on Environment Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hModule -II03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h	format and size in AVR, Using Instructions with Regist		Registers and Data	
Introduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.03 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware03 hReviewReview I03 hModule -II03 hLectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, O2 h	Memory, Watch Dog Timer, Flags and Special Function Re		Function Registers,	
Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.21 hHand on• Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware21 hReviewReview I03 hModuleIILectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,02 h		Data Formats and Assembler directive.		
Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.Program instruction by instruction, RISC Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardwareProgramProgramReviewReview IO3 hModule -IILectureAVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline,O2 h		Introduction to AVR Assembly Programming, In	struction Types and	03 hrs
Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, Ist, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware 21 h Review Review I 03 h Lecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Instruction Set of AVR (Data Transfer In	structions, Branch	
Structure of Assembly Program in AVR, asm, lst, map and object Structure of Assembly Program instruction by instruction, RISC Files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ 21 h instruction set • HLL Python programming on the hardware • HLL Python programming on the hardware 03 h Review Review I 03 h Lecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Instructions, Bit and Bit test Instructions, Ar	ithmetic and Logic	
files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set • HLL Python programming on the hardware 21 h Review Review I 03 h Lecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Instructions, MCU Control Instructions, Jump and RET Instruction),		
Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE. Image: Control of a control of		Structure of Assembly Program in AVR, asm, lst, map and object		
and memory with AVR Studio IDE. and memory with AVR Studio IDE. Hand on • Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set 21 h • HLL Python programming on the hardware • HLL Python programming on the hardware 03 h Review Review I 03 h Lecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		files, Executing a program instruction by	instruction, RISC	
Hand on Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set HLL Python programming on the hardware Review Review I O3 h Lecture AVR Time Delay Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h O2 h <lio2 h<="" li=""> O2 h <lio2 h<="" li=""></lio2></lio2>		Architecture features of AVR Microcontrollers	, Viewing registers	
Set of programs to be given on various instruction types/ instruction set 21 h • HLL Python programming on the hardware 03 h Review Review I 03 h Lecture AVR Time Delay 02 h /Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		and memory with AVR Studio IDE.		
instruction set HLL Python programming on the hardware Review Review I 03 h Module –II Lecture AVR Time Delay /Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h	Hand on	Assembly programming on the hardware using appropriate SDK		
• HLL Python programming on the hardware 03 h Review Review I 03 h Lecture AVR Time Delay 04 h /Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		Set of programs to be given on various instruction types/		
Review Review I 03 h Module –II Lecture AVR Time Delay /Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		instruction set		
Module –II Lecture AVR Time Delay /Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h		HLL Python programming on the hardware		
LectureAVR Time Delay/ReadingDelay Calculation of AVR, AVR Multistage execution Pipeline,02 h	Review	Review I		03 hrs
/Reading Delay Calculation of AVR, AVR Multistage execution Pipeline, 02 h	Module –II			
	Lecture	AVR Time Delay		
Timers/Counters, C Data Types	/Reading	Delay Calculation of AVR, AVR Multistage execution Pipeline,		
		Timers/Counters, C Data Types		

Hands on	AVR Timer/Counter Programming	06-hrs		
Lecture	AVR I/O Port Programming			
/Reading	O Port Pins and their functions, Role of DDR/DDRx Registers in			
	Input and output operations, Programming for I/O Ports,I/O Bit	02-hrs		
	Manipulations,			
Hands on	I/O Port programming	06-hrs		
Review	Review II	03-hrs		
	Module –III			
Lecture	Interrupts in AVR and Interrupt Programming			
/Reading	AVR Interrupts, Interrupts vs Polling, Interrupt Service Routine,			
	Steps in executing an interrupt, Sources of Interrupts, Interrupt	02 hrs		
	Priority, Concept of Context Saving in task switching, Enabling and			
	Disabling Interrupts, Programming Timer Interrupts, Programming			
	external interrupts,			
Hands on	Interrupt Programming	09 hrs		
Lecture	AVR Serial Port Programming			
/Reading	Basics of Serial Communication, RS232 standards, RS232 Pins,			
	RS232 Handshaking Signals, ATMEGA32 connections to RS232,			
	Baud Rate and UBRR Register, UDR register and USART, UCSR	UTINS		
	Registers and USART Configuration, Programming AVR for Serial			
	Communication.			
Hands on	Serial Communication programming	06 hrs		
Review	Review III	03 hrs		
	Module –IV			
Lecture	LCD and Keyboard Interfacing			
/Reading	LCD Interfacing, Sending Commands and Data to LCD (4 Bits	02 hrs		
	and/or 8 Bits at a time).			
Hands on	Keyboard Interfacing, Matrix Keyboard connection to AVR Ports,	06 hrs		
	Key Identification,			
Lecture	Chapter No. 8. ADC, DAC and Sensor Interfacing			
/Reading	Need for ADC and DAC in Interfacing, ADC Characteristics, ADC	C 02 hrs		
	devices, and ATmega32 ADC features, Programming A/D Converter			
Hands on	DAC Interfacing, Sensor Interfacing	03 hrs		
Review	Review IV	03 hrs		
Module –V				
	Integration of the work done in various modules according to the			
Hands on	problem statement	12 hrs		
Review	Review V	03 hrs		

Text Books:

1. Mazidi M. A, NaimiSarmad, NaimiSepehr, ""The AVR Microcontroller and Embedded System using Assembly and C", Prentice Hall.

Reference Books:

1.J. M. Hughes, "Arduino A Technical Reference", O'Reilly

Program: Bachelor of Engineering Semester - IV					
Course Title: Object Oriented Programming CourseCode:22ECAC20				.07	
L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/v		Contact Hrs: 3 hrs/we	eek		
ISA Marks: 50 ESA Marks: 50 Total Marks: 10		Total Marks: 100			
Teach	ing Hrs: 40		Exam Duration: 3hrs		
		Unit –I			
	Introduction: Introdu	ction to object orie	nted programming.		
1	Characteristics of obje	ect oriented languages,	Programming Basics,	4 hrs	
	arrays, Functions in C++ (parameter passing techniques.)				
	Classes and Objects: Int	roduction to Classes and (Dbjects, encapsulation		
2	visibility modifiers, cons	tructor and its types, nest	ed classes, String class	6 hrs	
	Anonymous objects. UN	IL diagrams to describe cla	sses and relationships.		
2	Inheritance: Introduction	on, types of Inheritance, o	constructors, Abstract	C has	
3	class, Aggregation: class	es within classes		6 hrs	
Unit –II					
4	Virtual Functions and	Polymorphism: Pointers,	Reference variables,	6 hrs	
4	Virtual functions, Friend functions, static functions, The 'this' pointer		01115		
	Exception Handling: Introduction to exceptions, Throwing an Exception,				
5	Try Block, Exception	Handler (Catching an	Exception), Multiple	6hrs	
5	exceptions. Exceptions	with arguments, Buil	t-in exception class		
	hierarchy.				
6	Templates : Operator overloading, Function and class templates, Smart			4 hrs	
0	pointers			4 1115	
		Unit –III			
7	Design Patterns: Creational, Structural and Behavioural design patterns.			4 hrs	
8	Standard Template Libra	ary: container classes: Seq	uence and Associative	4 hrs	
ð	Containers, Lambda Exp	ressions, Move semantics		4 nrs	
Textbooks					
1.	Robert Lafore, Object oriented programming in C++, 4 th Ed, Pearson edu		ication		
2001					
Reference Books					
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.				
2	Herbert Schildt: The Complete Reference C++. 4th Ed. Tata McGraw Hill. 2017				

2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	45&6	Solve Any 2 out of 3
	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

KLE Technological University Creating Value, Leveraging Knowledge

Program: Bachelor of Engineering Semester - IV				
Cou	rse Title: Operating System	Principles and Programming	Course Code: 22EC	AC208
L-T-	P: 4-1-0	Credits: 5	Contact Hrs: 6 hrs	/week
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Tea	Teaching Hrs: 50Tutorial/Practical: 28hrsExam Duration: 3			Hrs
	-	Unit –I		
1	Fundamentals of Process:			07 hrs
	Operating System Functio	ns and Characteristics, Process	s Concept, Process	
	Control and Operations, S	ystem Call, Inter Process Comr	nunication.	
2	CPU Scheduling:			07 hrs
	Basic Concepts, Schedule	ers, Scheduling Criteria, Sched	duling Algorithms,	
	-	d Thread API, Thread library.		
3	Process Synchronization:			06 hrs
	•	er Consumer problem, The		
	problem, Semaphores, Cla	ssical problems of synchroniza	ation.	
	Unit –II			
4	Deadlocks: 0			06 hrs
	Deadlock System Model and Deadlock Characterization, Methods for			
	-	llock Prevention, Deadlock Av	oidance, Deadlock	
	Detection, Recovery from	Deadlock		
5	File Management:			07 hrs
		ems and File Attributes, I-nod		
		Directory Files, Hard and sy	mbolic filenames,	
6	General File APIs. File and	Record Locking.		07.1
6	Memory Management:	tratacian Dealerman d	ning Castiens	07 hrs
		trategies, Background, Swap		
	memory anocation, Pagin	g, Structure of page table, Seg	nentation.	
7	Unit –III			C here
7	Virtual Memory Manager		ad paging Daga	5 hrs
	Virtual Memory Management, Background, Demand paging, Page			
8	replacement.			5 hrs
Ó	Case study: Windows 10 Design Pring	tiples, System Components Inf	Juantial Operating	5 115
	, .	ating System and IBM OS/360	idential Operating	

Text Books:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 9 ed., Wiley-India, 2019.
- 2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2018
- 3. xv6: Programming from the Ground Up, Jonathan Bartlett Edited by Dominick Bruno, Jr 2021

Reference Books:

- 1. William Stallings, "Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

S. No	Experiment	
1	Demonstration of UNIX commands related to processes, files and	
	memory	
2	The xv6 operating system, Processes in xv6,	
3	Process Management: Implementation of System Call on xv6,	
	Add a new system call in xv6	
4	Inter Process Communication (IPC): Pipes and FIFO	
5	Process synchronization	

List of Experiments

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Solve Any 1
	Q.No8	8	Solve Ally I

Progr	am: Bachelor of Engi	neering	Semester - IV		
Cours	e Title: Principles of	Compiler Design	Course Code:22ECAC	209	
L-T-P:	:3-1-0	Credits: 4	Contact Hrs: 05 hrs/	week	
ISA N	larks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ning Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 03 h	ſS	
		Unit –I			
	Introduction to cor	npilers:			
	Brief History Of Co	mpilers, Translation Process, N	lajor Data Structures		
1	In Compilers, Chor	nsky Hierarchy, Lexical Analys	is: Scanning Process,	06hrs	
	Regular Expression	s For Tokens, Lexical Errors, Ap	plications Of Regular		
	Expressions.				
	Finite Automata:				
	Introduction: Lang	guage, Automata, From Reg	ular Expressions To		
2		te Automata (DFA): E-Non		06hrs	
	Automata (E-NFA), NFA, DFA, DFA Optimization, Finite Automata As				
		nentation Of Finite Automata			
	Introduction to Syr	-		_	
3		ammars, Context-Free Gramma	ars (CFGs), Ambiguity	04 hrs	
	In Grammars And Languages, Role Of Parsing.				
	1	Unit –II			
-	Top Down Parsing:				
4	Introduction, Left Recursion, Left Factoring, LL (1) Parsing, FIRST And			08 hrs	
	,	r Recovery In Top Down Parsing	5.		
-	Bottom up Parsing:			00 h	
5	Introduction, SLR (1) Parsing, General LR (1) And LALR (1) Parsing, Error Recovery In Bottom Up Parsing.			08 hrs	
	Recovery in Bollon				
	Somantic Analysis	Unit –III			
6	Semantic Analysis:	Attributes Grammars, Algori	thm For Attributo	04 hrs	
0		pol Table, Data Types And Data		04 1115	
	Intermediate Code		Checking.		
			le Generation Code		
7	Intermediate Code And Data Structure For Code Generation, Code Generation Of Data Structure References, Code Generation Of Control			04 hrs	
	Statements.				
Text E					
		nica S. Lam, Ravi Sethi, Jeffrey D	Ullman, Compilers - Pi	rinciples,	
		ools, 2nd Edition, Pearson, 201	•	, ,	
-) Kenneth (Loud	en: Compiler Construction P	rincinles & Practice	Congage	

2. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage

Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer using LEX and YACC tools.	02
7	Design of CFG for validating Natural languages and implement the same.	02

Tutorial tentative plan

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2 ,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
ш	Q.No7	6	Solvo Any 1
	Q.No8	7	Solve Any 1

<u>BACK</u>

Program: Bachelor of Engineering Semester - IV					
Co	ourse Title: Exploratory Da	ata Analysis	Course Code: 22EC	AC210	
L-T-P: 2-0-2 Credit		Credits: 4	Contact Hrs: 6 hrs/	week	
IS	A Marks: 80	ESA Marks: 20	Total Marks: 100		
Те	Teaching Hrs: 60Tutorial/Practical: 56hrsExam Duration: 3 h			nrs	
		Unit –I			
1	Introduction and scientif	ic python:		10 hrs	
	Ecosystem for data sci	ence, basic python, numerio	cal and vectorized		
	computation, data manip	ulation, data visualization.			
2	Exploratory Data Analysi	s:		10 hrs	
	Types of data: categorica	l, numerical, probability distrik	outions , Descriptive		
	statistics, univariate and	multivariate statistics, advance	d data visualization,		
	Case study				
		Unit –II			
3	B Data Pre-Preprocessing				
	Data cleaning, data integration, dimensionality reduction: feature selection				
	and feature extraction, data transformation			10 hrs	
4	4 Supervised Learning :				
	Linear and logistic regres	sion, naïve Bayes classifier, K-n	earest neighbours	10 hrs	
5	Clustering				
	Partitioning-based, hierarchical clustering, density-based clustering			10 hrs	
		Unit –III			
6	Time-series analysis:				
	Autocorrelation, time-se	ries forecasting, auto regressi	ve moving average		
	models.			10 hrs	
Re	Reference Books:				
1.	Wes McKinney, Python	for Data Analysis, 3rd Edition,	O'Reilly Media, 202	2 (Early	
	Release).				
2.	Suresh Kumar Mukhiya, Usman Ahmed, Hands-On Exploratory Data Analysis with				
	Python : Perform EDA techniques to understand, summarize, and investigate your			ite your	
	data, Packt Publishing Limited, 27 March 2020.				
3.	Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques,				
	3rd Edition, Morgan Kaufmann, 2012.				

Scheme for End Semester Assessment (ESA)

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι		1, 2	Demonstration of Course
II	Lab Exam on Course Project	3,4,5	Project
III		6	

KLE Technological University Creating Value, Leveraging Knowledge

Program: Bac	chelor of Engineering Semester - IV			IV	
Course Title: (: Object Oriented Programming Lab Course Code: 22ECAP			e: 22ECAP206	
L-T-P: 0-0-1.5	Cre	edits: 1.5		Contact Hrs: 3 hrs/wee	
ISA Marks: 80	ES	A Marks: 20		Total Mark	s: 100
Teaching Hrs:	Tu	torial/Practica	l: 42hrs	Exam Dura	tion: 3hrs
Experiments	Lab assignments/ex	periment			Number of
Number					Slots
1	Demonstration: Introduction to Code Blocks IDE			Blocks IDE	4
	(Integrated Development Environment), C++				
	programming basics.				
2	Exercise : Classes and objects, Inheritance,			4	
	Polymorphism, Templates and Exceptions Handling				
3	Structured Enquiry : Classes and objects, Inheritance,			nheritance,	2
	Polymorphism, Templates and Exceptions Handling				
4	Open Ended : Data types, Classes and Objects,			2	
Inheritance polymorphism, Exception Handling. Design					
patterns					
Text Book:	-				

ext Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEd, Pearson education, 2001

Reference Books:

1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.

2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Evaluation:
Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
Continuous Internal	Exercises	40
Evaluation (80%)	Structured Enquiry	20
	Open Ended Experiment	20
End Semester Assessment	Structured Enquiry	20
(20%)		
	Total	100

Progra	am: Bachelor of Engineer	ing	Semester - IV		
Cours	e Title: Problem Solving	and Analysis	Course Code: 22EHS	H202	
L-T-P:	0.5-0-0	Credits: 0.5	Contact Hrs: 1hrs/w	/week	
ISA M	ISA Marks: 100 ESA Marks: NA Total Marks: 100		Total Marks: 100		
Teach	Teaching Hrs: 16 Exam Duration: NA		Exam Duration: NA		
		Unit –I			
	Analytical Thinking:				
	Analysis of Problems, P	uzzles for practice, Human	Relations, Direction		
1	Tests; Looking for Pat	terns: Number and Alpha	abet Series, Coding	4 hrs	
	Decoding; Diagrammati	c Solving: Sets and Venn dia	gram-based puzzles;		
	Visual Reasoning, Clock	s and Calendars			
	Mathematical Thinking	:			
2	Number System, Facto	rs and Multiples, Using Si	mple Equations for	4 hrs	
	Problem Solving, Ratio,	Proportion, and Variation			
3	Verbal Ability:			4 hrs	
5	Problem Solving using A	nalogies, Sentence Complet	tion	41113	
	Discussions & Debates:				
	Team efforts in Problem Solving; A Zero Group Discussion, Mock Group				
4	Discussions, and Feedback; Discussion v/s Debate; Starting a Group				
-		nt and other Corporate So		4 hrs	
		itment Group Discussion,	Types of Initiators:		
	Verbal and Thought, Co	nclusion of a Discussion			
Text E					
	NA				
Refer	ence Books:			. "	
		Iodern Approach to Verbal a	and Non – Verbal Reas	ioning",	
		ons, New Delhi, 2018		5	
		antitative Aptitude", Sultan	Chand and Sons, Nev	v Deihi,	
	2018	Nen Verhel Dessening" N	AcoNAillon India		
	•	l Non – Verbal Reasoning", N pok on Quicker Maths", BSC			
		ok on Quicker Maths", BSC			
		municate With Confidence,		:15	
		rd Power Made Easy, Goyal		c	
	 Cambridge Advance Kaplan's GRE guide 	d Learner's Dictionary, Cam	bildge offiversity Ples	5.	
	o. Rapian s GRE guide				

Program: Bachelor of Enginee	ring	Semester - IV		
Course Title: Vector Calculus and Linear Algebra Course Code: 15E		Course Code: 15EMAB2	MAB243	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 Hrs / we	eek	
SA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching hrs: 50		Exam Duration: 3 Hrs		
	Unit - I			
Vector Algebra Vector addition, multiplication	n (Dot and Cross products),	Triple products,	04 hrs	
Vector differentiation Vector functions, Vector differ function, Vector fields, Gradie	•	·	06 hrs	
Vector Integration Line and Surface integrals. Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem.				
	Unit - II			
Matrices and System of linear equations: Introduction to system of linear equations and its solutions, elementary row operations-echelon form, Rank of a matrix. Consistency of system of linear equation, solution of system of equations by (i) Direct methods -Gauss elimination, Gauss Jordon method (ii) Iterative methods- Guass-Seidal method. Eigen values and Eigen vectors of a matrix. Largest Eigen value and the corresponding Eigen vector by power method, Application case study.				
Vector space: Vector spaces and sub spaces- examples, Linear combinations Spanning sets, subspaces, Linear spans Row space of a matrix, Linear dependence and linear independence. Basis and dimensions, application to matrices, Rank of a matrix. Sums and direct sums, Coordinates, Application case study.				
	Unit – III			
Integral Transforms: • Laplace transformatio • Fourier transforms, Di	n and its applications screte Fourier transforms a	nd its applications	10 hrs	

Text Books (List of books as mentioned in the approved syllabus)

- 1. David C. Lay, "Linear Algebra and its Applications", 3rd Ed., Pearson Education, 2005
- 2. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001

KLE Technological University Creating Value, Leveraging Knowledge

3. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

References

- 3. Seymour Lipschutz & Marc Lipson, Linear Algebra, Schaums' outline
- 4. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 5. Sastry S S, Introductory method for numerical analysis, 3ed, PHI, 2003
- 6. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th Ed, Sultan Chand & Sons, New Delhi, 2000.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter numbers	Instructions
	Marks Each		
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
- 111	Q.No7, Q.No-8	6	Solve Any 1 out of 2

KLE Technological University Creating Value, Leveraging Knowledge

Semester – V

	Jennester – v	• • • •		
Program: Bachelor of Engineering Semester - V				
		Course Code: 22ECA		
L-T-P: 3-0-0	T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/v		/week	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 40		Exam Duration: 3hrs		
	Unit - I			
Chapter No. 1. Software Engine Professional software develope Software processes: Software with change.	nent, Software engineering		05 hrs	
Chapter No. 2. Agile Software Agile methods, Plan-driven an Agile project management.	-	treme programming,	04 hrs	
Chapter No. 3. Requirement Engineering Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirements elicitation and analysis; Requirements validation; Requirements management, Source Control Management, Collaboration tools.				
	Unit - II			
Chapter No. 4. System Modeling Context models, Interaction Models, Structural models, Behavioral models. Design Tools.				
Chapter No. 5. Architectural Design Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.			05 hrs	
Chapter No. 6. Software Testing Development Testing, Test Driven Development, Release Testing, User Testing and Testing Tools.			06 hrs	
Unit - III				
Chapter No. 7. Introduction to DevOps Principles, Benefits of stages, Delivery pipeline, Tech	f working in a DevOps er	•	04 hrs	

Chapter No. 8. Continuous integration and continuous delivery (CI/CD)04 hrsEssentials of continuous integration, Jenkins architecture, Jenkins securityauthentication.authentication.authentication.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
11	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Solvo Apy 1
	Q.No8	8	Solve Any 1

<u>BACK</u>

Progr	am: Bachelor of Enginee	ring	Semester - V		
Cours	Course Title: Computer Networks Course Code: 22EC			22ECAC302	
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/	/week	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 40		Exam Duration: 3	hrs	
		Unit –I			
1	Throughput in Packet-S Models: OSI and TCP/IP Principles of Network A in the Internet – SMTP,	t; The Network Edge and Cor witched Networks; Protocol	Layer and Service TP; Electronic Mail s Directory Service	8 hrs	
2	Transport-Layer Services Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Principles of Reliable Data Transfer Protocol: Building RDT protocols, pipelined RDT protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control.			8 hrs	
		Unit –II			
	Circuit and Datagram	ane and Control Plane of Netwo Networks; The Internet Pr IPv4 addressing, NAT, ICMP,	otocol: Datagram		
3	Routing Algorithm, Hier AS Routing in the Inter	I plane outing Algorithm, The Dis rarchical Routing, Routing in net: RIP, Intra-AS Routing in t Broadcast and Multicast F	the Internet, intra- the Internet: OSPF,	10 hrs	
4	Techniques: Parity C	Link Layer, Error-Detection Checks, Check summing C) binary and polynomial, Ha	Methods, Cyclic	6 hrs	

KLE Technological University Creating Value, Leveraging Knowledge

	Unit –III				
5	Data Link Layer: Channel access protocols Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access.	4 hrs			
6	Switched Local Area Networks Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching (MPLS),	4 hrs			
Text B	ooks				
1.	 J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021. 				
Refere	ence Books:				
	Behrouz A. Forouzan, "Data Communications and Networking wit Protocol Suite", 6 th Edition, McGraw Hill, 2021				
2.	Larry Peterson, Bruce Davie "Computer networks : a systems approa Edition, 2021.	ach", 6th			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally I

Pro	gram: Bachelor of Eng	ineering	Semester - V	
C οι	ırse Title: Machine Lea	irning	Course Code: 22ECAC30	3
L-T-	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теа	Teaching Hrs: 40 Exam Duration: 3 hrs			
		Unit –I		
	Chapter No 1. Introdu	uction to machine learnin	g	
1	Introduction to Mach	nine Learning, Application	s of Machine Learning,	8 hrs
1	Types of Machine	e Learning: Supervised	d, Unsupervised and	01115
	Reinforcement learnii	ng, Dataset formats, Featu	ares and observations.	
	Chapter No 2. Sup	ervised Learning: Linea	ar Regression, Logistic	
	Regression			
2	Linear Regression: Sir	ngle and Multiple variable	es, Sum of squares error	8 hrs
2	function, The Grad	ient descent algorithm	, Application, Logistic	01115
	Regression, The cost	function, Classification u	sing logistic regression,	
	one-vsall classification	on using logistic regression	n, Regularization.	
		Unit –II		
	Chapter No 3. Supervised Learning: Neural Network			
4	Introduction to perceptron learning, Model representation, Gradient			
4	checking, Back propagation algorithm, Multi-class classification, and			
	Application- classifying digits. Support vector machines.			
	Chapter No 4. Unsup	ervised Learning : Dimen	sionality reduction and	
	Learning Theory			
5	Expectation Maximization (EM), Factor Analysis, The dimensionality			
5	reduction, PCA : PCA for compression, Incremental PCA, Randomized			8 hrs
	PCA, Kernel PCA, ICA (Independent Component Analysis). Bias/variance			
	tradeoff, Union and C	hernoff Hoeffding bounds	VC dimension.	
	Unit –III			
	Chapter No 5. Reinfo	rcement Learning		
6	Reinforcement Learni	ing: Introduction, Applicat	tions, and Model of the	4 hrs
	environment, Policy search			
	Chapter No 6: Lear	ning to optimize reward	ls and value functions	
7	Evaluating actions T	he credit assignment pro	blem, Policy gradients,	4 hrs
	Markov decision proc			

Text Books (List of books as mentioned in the approved syllabus)

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.

KLE Technological University Creating Value, Leveraging Knowledge

References

- 1. Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelian Gerona, Publisher: O'Reilly Media, July 2016.
- 2. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

ISA Scheme			
Assessment	Weightage in Marks		
ISA 1	15		
ISA 2	15		
Activity	20		
Total	50		

Evaluation Scheme

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3,	1, 2,3	Solve Any 3
II	Q.No4, Q.No5, Q.No6,	4,5,6	Solve Any 3
ш	Q.No7, Q.No8	7 and 8	Solve Any 1

Progra	am: Bachelor of Engin	eering	Semester - V		
Cours	e Title: Internet of Thi	ngs	Course Code: 22ECA	AC304	
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 4hrs/w	eek	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 hr	S	
		Unit –I			
	Introduction to Inter	rnet of Things (IoT):			
1	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT			04 hrs	
	functional blocks, co	mmunication models and APIs	, IoT Levels.		
	IoT Architecture:				
2	Enabling technologie	es: Sensors, Zigbee, Bluetooth	/BLE, IoT ecosystem,	04 hrs	
-	Data Link protocols:	IEEE 802.15.4e, IEEE 802.11.al	n, DASH7, Low Power	04 1113	
	Wide Area Network	(LPWAN), LTE-m, NB-IOT, LORa,	Z-Wave.		
	Network protocols:				
	-	Low-Power and Lossy Network			
3	(CORPL), Channel-Aware Routing Protocol (CARP), Low power Wireless			04 hrs	
	Personal Area Networks (LoWPAN), IPV6, 6LoWPAN, Route-Over &				
	Mesh-Under techniques.				
		Unit –II			
	Application and Sec		MOTT (a. Cara		
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor				
4	Networks, Secure MQTT, Advanced Message Queuing Protocol (AMQP),				
	Constrained Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-Power and Lossy Networks (RPL), TLS/DTLS.				
		y and Identity Managemen	•		
	Platforms:	sy and identity wandgemen			
		lology, Case Study on IoT S	system for Weather		
5	-	ic building blocks of an IoT dev	•	05 hrs	
	Operating Systems: Contiki, RIOT, ARM Mbed OS. IoT IAM infrastructure				
		Publish / Subscribe schemes			
		aspberry Pi &WiFi controllers	(CC3200/ESP8266) &		
6	6LoWPAN Controller	• •	-	04 hrs	
	XML, JSON, SOAP an	d REST-based approach, WebS	ocket protocol.		
		Unit –III			
	IoT prototyping:				
7	Business models,	example applications: Case	studies on Home	06 hrs	
	automation, Smart	Cities, Environment, Energy,	Agriculture, Health,		

Retail with emphasis on data analytics and security. Industrial IoT (IIoT). Role of AI/ML in IoT (AIoT).

Text Books:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.
- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014
- 3. Drew Van Duren, Brian Russell "Practical Internet of Things Security" Second Edition, Packt Publishing November 2018.

References

- 1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.
- 2. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", Wiley 2009.

	8 Questions to be set of 20	20 Chapter		
UNIT	Marks Each	Numbers	Instructions	
1	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2	
Ш	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2	
III	Q.No7	7, 8	Solve Any 1	

Scheme for End Semester Assessment (ESA)

Program: Bachel	or of Engineeri	ng	Semester - V	
Course Title: Ma	chine Learning	Lab	Course Code: 2	2ECAP303
L-T-P:0-0-1.5		Credits: 1.5	Contact Hrs: 3 h	nrs/week
ISA Marks: 80		ESA Marks: 20	Total Marks: 100	
Teaching Hrs:		Tutorial/Practical: 42hrs	Exam Duration:	3hrs
Experiment No.	Brief	description about the expe	eriment	Number
				of slots
1.	Introduction t	o TensorFlow		1
	Sample progra	ams with TensorFlow		
2.	Linear Regres	sion		2
	Nonlinear Reg	gression		
	Logistic Regre	ssion		
	Activation Fur	nctions		
3.	Training a mu	lti-layer perceptron using Al	Pl's	1
4.	Training a neural network – construction, execution and		1	
	use of neural	network.		
5.	Training Neur	al Networks - a sequence	classifier and to	1
	predict time s	eries.		
6.	Classification	of Human Facial Expressio	ns using Neural	1
	Networks			
7.	Principal Com	ponent Analysis on		
	 simple 	e matrix		1
	on iris	dataset		
8.	Course Proje	ect: Students in a group	of four shall	4
	implement m	nachine learning solution	to a real-world	
	problem using	g ML frameworks in any of	the areas listed	
	below:			
	 Natura 	al Language Processing		
	Deep	Reinforcement Learning		
	 Image 	processing		
	Audio	processing		
	Patter	n recognition		
	 Data v 	isualization and analysis		

Reference Books:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelian Gerona, Publisher: O'Reilly Media, July 2016.
- 4. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

Prog	ram: Bachelor of Engineer	ing	Semester - V	
Cours	urse Title: Web Technologies Lab Course Code: 22EC		AP304	
L-T-P	P: 0-0-2 Credits: 2		Contact Hrs: 4hrs/week	
ISA N	/larks: 80	ESA Marks: 20	Total Marks: 100	
Teach	ning Hrs:	Tutorial/Practical: 56hrs	Exam Duration: 3	hrs
1	Introduction to HTML ba	sics, JavaScript:		
	Introduction to World W	ide Web, Web Application A	Architecture, HTML	
	Basics, Cascading Style Sh	eets, JavaScript Basics, Boots	strap	4 hrs
2	RESTful API using NodeJS	and Express:		
	Introduction to Node.js .	Building servers using the http	o and net modules,	
	Node modules and event	s, Express, REST API client, F	Postman, Accessing	
	Data, Data Security using	Bcrypt. API security using JW	T tokens.	12 hrs
3	Angular:			
	Building blocks of Angular Apps, Components, Templates, Directives.			
	Services, Dependency injection, Bindings, observables, pipes, component			
	communications, Forms,	nteracting with servers using	HTTP. RouteGuard,	
	Interceptors, Bundling an	d deploying applications, Hos	ting	12 hrs
4	React:			
	JSX, React Components,	Interaction of Components,	Lifecycle methods,	
	Form.			8 hrs
Refe	rence Books:			
1	. Robert W. Sebesta "Prog	gramming the World Wide W	eb", Pearson Publica	itions 8th
	Edition, 2014.			
2	. Nathan Murray, Felipe	Coury, et al, "ng-book: The (Complete Guide to	Angular",
	FullStack.io Publications, 2019			
3	. AzatMardan, "Practical	Node.js: Building Real-Wor	ld Scalable Web Ap	ps", 2nd
	Edition Apress, 2018.			
4	. Den Ward, "React Nati	ve Cookbook: Recipes for so	olving common Rea	ct Native
	development problems'	, 2nd Edition.2019		

Lab Plan				
Expt./ Job	Lab assignments/experiment	No. of Lab. Slots per		
No.		batch (estimate)		
1	Demonstration on HTML,	02		
T	JavaScript			
2	Exercise on JavaScript	01		
3	Demonstration on Node 03			
4	Exercise on Node 01			
5	Demonstration on Angular	02		
6	Exercise on Angular 01			
7	Demonstration on React	02		
8	Exercise on React	01		
9	Structured enquiry 1 – MEAN	02		
10	Structured enquiry 2 – React	02		

Lab Plan

Program: Bachelor of Engineering		Semester - V
Course Title: Computer Networks Lab		Course Code: 22ECAP302
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42hrs	Exam Duration: 3hrs

Tentative plan of lab Implementation

Week No	Lab Assignments
1	Demonstration of n/w commands and tools in command prompt.
2	Demonstration of Cisco Packet Tracer network tool: usage of hub, switch,
	and a router using a simple topology
3	Application layer protocol implementation – Manual configuration and
	DHCP
4	Application layer protocol implementation - DNS and HTTP
5	Demonstration of socket programming using a simple message board
	application - Connection oriented and connectionless.
6	Demonstration of simple banking application using connection oriented
	socket programming.
7	Demonstration of a simple calculator application using connectionless
	socket programming.
8	Introduction to Junos and Demonstration of Initial Configuration.
9	Configuration and analysis of VLAN and enabling DHCP.
10	Configuration and analysis of OSPF routing algorithm.

Text Books

1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.

Reference Books:

- 1. Behrouz A. Forouzan, "Data Communications and Networking with TCPIP Protocol Suite", 6th Edition, McGraw Hill, 2021
- 2. Larry Peterson, Bruce Davie "Computer networks : a systems approach", 6th Edition, 2021.

Program: Bachelor of Engineering		Semester - V
Course Title: Mini Project		Course Code: 22ECAW301
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3 Hrs

Student Evaluation Matrix

SI. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 & peer review:	Final Demo & exhibition Peer review will be done after review 1 & review 4)	10
		Total	50

Scheme for End Semester Assessment (ESA)

ESA Evaluation (50 Marks)

SI No	Description	Marks
1	Write up – Learning from Project, Personal Contribution	05
	to project	
2	Final demo & Presentation(Solution approach to the	35
	identified problem, testing and results)	
4	Individual Contribution to the team	10
	Total	50

<u>BACK</u>

Program: Bachelor of Engine	ering		
Course Title: Statistics and pr	obability	Course Code: 15EM	AB303
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 Hr	S
	Unit – I		
Chapter No. 1. Description of Introduction - Data, Variables, data, Measure of Skewness, C and dispersion, Choice of suit	, Graphical representation a Comparison of data sets us	ing central tendency	5 hrs
Chapter No. 2. Correlation and Regression Correlation and Regression: Meaning, scatter diagram, Karl Pearson's coefficient of correlation, Limits of correlation coefficient. Linear regression, regression coefficients, properties, Angle between two regression lines, Examples		nt. Linear regression,	5 hrs
Chapter No. 3. Probability Introduction-Definition, Axioms, addition and multiplication rule of probability (without proof), conditional probability, Baye's rule –examples		6 hrs	
	Unit – II		
Chapter No. 4. Theoretical Distributions Random variables-simple Examples, Discrete and continuous random variables; Theoretical distributions: Binomial, Poisson, Exponential, Normal, Uniform		6 hrs	
Chapter No. 5. Sampling Distribution Introduction-Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type-I and Type-II errors, level of significance, Confidence limits for means, testing of hypothesis for means; large and small samples, Student's t-test and F-test.		10 hrs	
Unit – III			
Chapter No. 6. Tests of Hypothesis 6.1 Test for coefficient of correlation, Chi-square test for goodness of fit, test for dependence of attributes 6.2 ANOVA – One way and Two way		8 hrs	

Semester - VI

Prog	gram: Bachelor of Engineer	ing	Semester - VI		
Cou	rse Title: Deep Learning		Course code: 22	CAC305	
L-T-I	P: 3-0-1	Credits: 4	Contact Hrs: 5hrs/v		
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100)	
Теас	ching Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration:	3 hrs	
		Unit-I			
1	Chapter No 1. Introducti	on to Deep Neural Network –	1:		
	Convolution and pooling	, Activation functions, data p	rocessing, Batch	6 hrs	
	Normalization, transfer le	earning, back propagation algo	rithms.		
2	Chapter No 2. Deep Neu	ral Network – 2:			
	Update rules, hyper para	meter tuning, vs learning rate	scheduling, data		
	augmentation Architectu	res: AlexNet, VGG, ResNet ,Mo	obileNet	8 hrs	
		Unit-II			
3	Chantor No 2 Door Uno	unarvised Learning			
3	Chapter No 3. Deep Unst		ta) Variational	7 hrs	
		d, denoising, contractive e	-	7 nrs	
		al Generative Networks, Adve			
4		GAN, Super-Resolution GAN, C	ycie gan		
4	Chapter No 4. Recurrent		plamantation of	6 hrs	
	, , , , , ,		0 IIIS		
	RNN & LSTM , Embeddings & Word2vec , Sentiment Prediction RNN Unit-III				
		Unit-ini			
5		ng Deep Neural Networks: H	lyper parameter	5 hrs	
	tuning, Regularization an	d Optimization:			
	Regularization, Mini-bat	ch Gradient Descent, Hyperpa	arameter Tuning,		
	Batch Normalization and	Programming Frameworks			
Text	book:				
1.		arning, Mc Graw Hill, McGraw	-Hill Science ,editi	on 3	
2.	Deep Learning with Pytho				
3.	, 0	Machine Learning and Deep L	0 /	on, scikit-	
	learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili.				
	erence book:				
1.	•	rn Recognition and Machine L			
2.		ng with Scikit-Learn and Tenso	• •		
	-	lligent Systems ,By Aurélien	Géron , Publisher	: O'Reilly	
	Media, July 2016				
3.	Advanced Machine Learni	ng with Python Paperback, 28	Jul 2016 by John H	learty.	

Experiment	Brief description about the experiment	Number
No.		of slots
1.	Introduction to Neural networks training techniques.	2
2.	Designing the DNN model using transfer learning	1
	technique.	
3.	Implementation of GAN:	1
	Experiment on Autoencoders and Variational	
	Autoencoders	
4.	Implementation of GAN:	2
	Experiments on Conditional GAN, Super-Resolution	
	GAN, Cycle GAN	
5.	Implementation of RNN:	1
	Implementation of RNN & LSTM and Embeddings &	
	Word2vec	
6.	Experiments on Model Optimization Techniques: Hyper	1
	parameter tuning, Regularization and Optimization	
7.	Course Project	4

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Solve Any 1
	Q.No8	8	

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
ISA 1	15
ISA-2	15
Lab	20
Total	50

Prog	gram: Bachelor of Engineer	ing	Semester - VI		
Course Title: Embedded Intelligent Systems		Course code: 23ECAC306			
L-T-F	L-T-P: 1-0-2 Credits: 3 Contact Hrs: 5hrs/		Contact Hrs: 5hrs/v	week	
ISA Marks: 80 ESA Marks: 20 Total Marks: 100					
Teaching Hrs.: 20 Tutorial/Practical: 56hrs Exam Duration: 3 h			nrs		
		L			
	Basics of embedded syst	ems			
	Linux Application Program	nming, System V IPC, Linux I	Kernel Internals and		
1	Architecture, Kernel Core	e, Linux Device Driver Progr	amming, Interrupts	3 hrs	
	& Timers, Sample shell s	cript, application program,	driver source build		
	and execute.				
	Heterogeneous computi	ng			
	Basics of heterogeneous	computing with various har	dware architectures		
2	designed for specific type	e of tasks, Advanced hetero	geneous computing		
Z	with a. Introduction to	Parallel programming b.	GPU programming	3 hrs	
	(OpenCL) c. Open stand	ards for heterogeneous co	omputing (Openvx),		
	Basic OpenCL examples -	Coding, compilation and ex	ecution		
	ML Frameworks lab with the target device				
	Caffe, TensorFlow, TF Lite machine learning frameworks & architecture,				
•	Model parsing, feature	support and flexibility,	supported layers,	3 hrs	
3	advantages and disadvantages with each of these frameworks, Android				
	NN architecture overview, Full stack compilation and execution on				
	embedded device				
Model Development and Optimization					
	Significance of on device	e AI, Quantization, prunir	ng, weight sharing,		
4	Distillation, Various pre-t	rained networks and desig	n considerations to	3hrs	
	choose a particular pre	-trained model, Federated	Learning, Flexible		
	Inferencing				
	Android Anatomy				
5	Android Architecture, Lin	ux Kernel, Binder, HAL Nativ	e Libraries, Android	2 hrs	
	Runtime, Dalvik Applicati	on framework , Application	s, IPC		
Text	Books				
1.	Linux System Programming, by Robert Love, Copyright © 2007 O'Reilly Media				
2.	2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad				
Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann					
Reference Books:					
1. Deep Learning, MIT Press book ,Goodfellow, Bengio, and Courville's					
2.	Beginning Android , by Wei-Meng Lee , Publisher: Wrox , O'Reilly Media				

SI. No.	Experiments	Number of slots
1.	Linux Application Programming.	2
2.	Basic OpenCL examples, High level language to assembly language translation, optimization and	2
	power management.	
3.	Deep Learning Frameworks and optimization techniques.	2
4.	Implementation of basic and DNN architecture for Android framework, Push ML/DL model on Android device and run application.	3
5.	Course project	5

Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
In Semester	Exercise on Basics of embedded systems	10
Assessment	Exercise on Heterogeneous computing	10
(80%)	Exercise on ML Frameworks	10
	Exercise on Android Anatomy	10
	Course Project	40
End Semester	Experiment/course project on Android	20
Assessment	device implementing ML/DL model	
(20%)	Total	100

Program: Bachelor of Engineering		Semester - VI	
Course Title: Minor Project 1		Course Code: 23ECAW303	
L-T-P: 1-0-4 Credits: 5		Contact Hrs: 3 hrs/week	
ISA Marks: 50 ESA Marks: 50		Total Marks: 100	
Teaching Hrs: 20 Tutorial/Practical: 42 hrs		Exam Duration: 3 hrs	

Sixth semester minor project 1 theme: Usage of Design Principles in building the solution.

Minor Project 1 aims to design and develop a Java Full Stack Web solution using RESTful APIs - design patterns, User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project Domains: United Nations Sustainable Development Goals (SDGs)

- 1. No Poverty
- 2. Zero Hunger
- 3. Good Health and Well-being
- 4. Quality Education
- 5. Gender Equality
- 6. Clean Water and Sanitation
- 7. Affordable and Clean Energy
- 8. Decent Work and Economic Growth
- 9. Industry, Innovation, and Infrastructure
- 10. Reduced Inequality
- 11. Sustainable Cities and Communities
- 12. Responsible Consumption and Production
- 13. Climate Action
- 14. Life Below Water
- 15. Life on Land
- 16. Peace, Justice, and Strong Institutions
- 17. Partnerships for the Goals

Student Evaluation Matrix:

Project will have one Prerequisite test and 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Droroquisito tost	Prerequisite test on OOPs and Database
Prerequisite test	Management Systems fundamentals
	Identification of problem, objectives,
Review-1	requirement analysis, UI design and mapping
	to SDG goals.
Review-2	Implementation: coding as per standards,
Neview-2	module testing.
Review-3	System integration, testing and demo of the
Neview-5	final project

Scheme for End Semester Assessment (ESA)

SI. No.	Expectation	Marks
1	Write up	05
	1. Problem Statement and Objectives.	
	2. System design with brief description.	
	3. Concluding remarks.	
2	Presentation: Prepare minimum of 15-18 slides	05
	of presentation with consultation of your	
	respective guides.	
3	Demo (Complete execution of the project with	30
	results) and Viva voce.	
4.	Project Report / Portfolio.	10

Program: Bachelor of Engineering		Semester - VI
Course Title: Minor Project - 2		Course Code: 23ECAW304
L-T-P: 0-0-5 Credits: 5		Contact Hrs: 3 hrs/week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hrs: Tutorial/Practical: 42 hrs		Exam Duration: 3 hrs

The objective of the minor project is to develop deeper understanding of the chosen area of technology vertical and develop applications with a comprehensive and systematic approach.

Project Domains:

Networking	Data System AI & ML		AI & ML	Industry/Domain
	Engineering	Engineering		
Internet of	Data Analytics	Parallel	Supervised	As per industry
Things		Computing	Learning	requirements
Software	Data Processing	High	Unsupervised	-
Defined	(Image/Video/	Performance	Learning	
Network	Audio/Text)	Computing		
Cloud	Natural	Quantum	Deep	-
Computing	language	Computing	Learning	
	processing			
Block Chains	Computer	-	Generative	-
	Vision		Models	
Wireless Ad-	-	-	-	-
hoc & Sensor				
Networks				
	Any other related themes			

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Assessment Weightage in Marks		Assessment Weightage in Marks
	Review-1	10
ISA	Review-2	20
	Review-3	20
ESA		50
Total		100

ISA (periodic	Review Expectation	Guide Marks	Reviewer Marks	Total Marks
reviews)		IVIAL KS	WICHNS	IVIAL KS
Review-1	Identification of problem, objectives, requirement analysis and report.	5	5	10
Review-2	Design and Implementation: coding as per standards, module testing.	10	10	20
Review-3	System testing and demo of the final project, quality of code, result analysis and project report.	10	10	20
Total		25	25	50

Scheme for In-Semester Assessment (ISA)

Scheme for End Semester Assessment (ESA)

Parameters	Pl's	Max	СО	
		Marks		BL
Demo with solution approach to	14.3.1	30	1	4
the identified problem				
Testing & Results	3.4.2	05	2	4
Presentation	9.3.1	05	3	3
Individual Contribution	14.3.1	05	3	3
Report	10.1.2	05	3	3
Total = 50				

<u>BACK</u>

Professional Electives- 1, 2 & 3

Professional Electives- 1, 2 & 3 Program: Bachelor of Engineering					
-	Course Title: Fundamentals of Image and Video				
Proce	essing	C C		Course Code: 22E	CAE310
L-T-P	: 2-0-1	Credits: 3	Credits: 3 Contact Hrs: 4hrs/week		
ISA N	/larks: 50	ESA Marks: 50		Total Marks: 100	
Teacl	Teaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration:		8 hrs		
	1	Uni	t –l		
1	Introduction to Immputwage and Video Processing:				
	Introduction, 2-dimensional (2D) and 3-dimensional (3D) signals,				
	analog/digital dich	notomy, electr	omagnetic	spectrum, and	
	applications.				4hrs
2	Signals and Systems				
	Fundamentals of 2	-	•		
	signals, linear space-	•	is, 2D convolu	tion, and filtering	4 h.u.s
2	in the spatial domain.		4 hrs		
3	1 5				
	2D Fourier transform, sampling, discrete Fourier transform, and filtering in the frequency domain.			4 hrs	
4				41113	
-	Applications of motion estimation, phase correlation, block matching,				
	spatio-temporal gradient methods, and fundamentals of color image				
	processing.			4 hrs	
		Uni	t –II		
5	Image Enhancement	:			
	Point-wise intensity transformation, histogram processing, linear and				
	non-linear noise smoothing, sharpening, homomorphic filtering,				
	pseudo-coloring, and video enhancement. 3 hrs		3 hrs		
6	Image Recovery:				
	Introduction to image and video recovery, image restoration, matrix-				
	vector notation for images, inverse filtering, constrained least squares				
	(CLS), set-theoretic restoration approaches, iterative restoration				
	algorithms, and spatially adaptive algorithms.				
	Wiener restoration filter, Wiener noise smoothing filter, maximum				
	likelihood and maximum a posteriori estimation, and Bayesian				
	restoration algorithm				5 hrs
7	Lossless and Lossy Co	-	,		
	Elements of informa	• •	_ .		F b
	and fax, arithmetic	coaing, dictiona	ary technique	s, and predictive	5 hrs

KLE Technological University Creating Value, Leveraging Knowledge

r		,		
	coding. Scalar and vector quantization, differential pulse-code			
	modulation, fractal image compression, transform coding, JPEG, and			
sub band image compression.				
8	8 Video Compression :			
Motion-compensated hybrid video encoding and video compression				
standards including H.261, H.263, H.264, H.265, MPEG-1, MPEG-2,				
	and MPEG-4.	3 hrs		
	Unit –III			
9	Image and Video Segmentation :			
	Intensity discontinuity and intensity similarity, watersheds and K-			
	means algorithms, and other advanced methods.	4 hrs		
10	Sparsity:			
Sparsity-promoting norms, matching pursuit algorithm, smooth				
	reformulations, and an overview of the applications.	4 hrs		
Text	Books:			
1	1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 4th edition, Pearson			
	Education(Asia) Pte. Ltd/Prentice Hall of India, 2018.			
2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.				
Reference Books:				
3	3. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education			
	(Asia) Pte. Ltd./Prentice Hall of India, 2004.			
4	. Alan C Bovik" Essential Guide to Video Processing", AP Elsevier p	ublication,		
1				

UNIT	8 Questions to be set of 20	Chapter	Instructions	
	Marks Each	Numbers		
I	Q.No1, Q.No2, Q.No3	1, 2,3,4	Solve Any 2 out of 3	
П	Q.No4, Q.No5, Q.No6	5,6,7,8	Solve Any 2 out of 3	
	Q.No7	9	Solve Any 1 out of 2	
111	Q.No8	19		

Prog	gram: Bachelor of Enginee	ering		
Cour	se Title: Computer Vision		Course Code: 22ECAE	311
L-T-P	2: 2-0-1	Credits: 3	Contact Hrs: 4hrs/we	eek
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	5
		Unit – I		
1	1 Introduction			
	Computer Vision Overv	view, Pixels and image re	presentation, Filters:	
	Linear systems, Convolut	tions and cross-correlations	; Lab: Basics, Filters	
2	Features and filtering			8hrs
	Edge detection: Gaussi	an, Sobel filters, Canny ed	ge detector, Features	
	and fitting: RANSAC Lo	cal features, Harris corne	r detection, Feature	
	descriptors: Difference	of gaussians, Scale invaria	nt feature transform;	
	Lab: Filters, Edges, Featu	res		
		Unit – II		
3	Semantic segmentation 6			6 hrs
	Perceptual grouping, Agglomerative clustering, Super pixels and over segmentation; Clustering: K-means, Mean shift; Visual Bag of Words:			
	Texture features, Visual bag of words; Lab: Resizing, clustering,			
	recognition			
4	Motion			6hrs
	•	de method, Horn-Schunk I	· •	
		Feature Tracking, Lucas	KanadeTomasi (KLT)	
	tracker; Lab: Object dete	ection, optical flow		
	1	Unit – III		
	Advanced Techniques			6hrs
5		pyramids, Object recogn		
	reduction, Face identification	ation, Detecting objects by	parts	
Refer	rence Books:			
1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.				
2	· .	Computer Vision: A Moder	n Approach, Pearson Ec	lucatio
2	India, 2^{nd} Ed, 2015.	non Multiple Mir C	Company in Company is	\/:-:-
3.	-	sserman, Multiple View G	eometry in Computer	VISIO
	Cambridge University P	ress, 2nd Edition, 2004.		

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
111	Lab exam	5	Lab exam evaluation

<u>BACK</u>

Pro	gram: Bachelor of Engineer	ing			
Course Title: Reinforcement Learning Course Code: 22ECAE					
L-T-	P: 3-0-0	Credits: 3	Contact hrs.: 3hrs/v	veek	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100					
Teaching hrs.: 40 Exam Duration: 3 h			s		
		Unit –I			
1	Introduction:				
	Overview of machine learning, Supervised learning vs. unsupervised				
	learning vs. reinforcemen	t learning, Elements of rein	forcement learning:		
	agent, environment, rew	vard, policy, value function	, Markov decision		
	processes (MDPs).				
2	Dynamic programming:			5 hrs	
	Policy evaluation and ite	ration, Value iteration, Asyr	nchronous dynamic		
	programming.				
3	Monte Carlo methods:			5 hrs	
		tion, First-visit and every-vis	it MC, On-policy vs.		
	off-policy learning.				
		Unit –II		-	
4				5 hrs	
_	TD(0) prediction, Sarsa and Q-learning, Eligibility traces.				
5	Function approximation:		5	6 hrs	
		ation, Non-linear function a	ipproximation, Deep		
<u> </u>	neural networks.				
6	Policy gradients:	aradiant theorem BEINEOD	CE algorithm Actor	6 hrs	
	critic methods.	gradient theorem, REINFOR	CE algorithm, Actor-		
	chuc methous.	Unit –III			
7	Exploration-exploitation +	rade-offs: Epsilon-greedy, Bo	Itzmann exploration	3 hrs	
	· ·	UCB), Thompson sampling.			
8		rning: Deep Q-networks (D	QN), Double DQN,	5 hrs	
	•	adient methods with func			
	applications of Reinforcem				
Tex	t Book:	-		1	
	1. "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G.				
	Barto (2nd edition, MIT Press, 2018).				
Ref	erence Books:				
1.	Kaelbling, L. P., Littman, N	1. L., & Moore, A. W. (1996)	. Reinforcement lear	ning: A	
	survey. Journal of artificial	intelligence research, 4, 237-	285.		

- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
- 3. Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (pp. 1889-1897).

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	numbers	
Ι	Q.No1, Q.No2, Q.No	1, 2	Solve Any 2
	3		
II	Q.No4, Q.No5, Q.No	3, 4	Solve Any 2
	6		
Ш	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally I

Program: Bachelor of Engineering						
Cour	Course Title: Natural Language processing with Course Code: 22ECAE313					
Neur	al Network models					
L-T-P	: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week			
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100			
Teacl	hing Hrs: 40		Exam Duration: 3 hrs			
	1	Unit –I				
1	Introduction to Nat	ural Language Processing		7 hrs		
	Introduction to Nat	ural Language Processing	g, Applications of Natural			
	Language Processir	ng, Word2vec introducti	ion, Word2vec objective			
	function gradients					
2	Dependency Parsing	g, Recurrent Neural Netw	orks	8 hrs		
	Dependency Gramn	nar, Neural dependency	parsing, Recurrent Neural			
	Networks and Language Models, Vanishing Gradients, Fancy RNNs					
		Unit –II				
3	Machine Translation, Seq2Seq and Attention			8 hrs		
	Machine Translation, Seq2Seq and Attention, Advanced Attention					
4	Transformer Netwo	rks, Coreference Resoluti	on, Memory Networks	9 hrs		
	Transformer Netwo	rks and CNNs, Tree Recur	sive Neural Networks and			
	Constituency Parsing	g , Advanced Architecture	s and Memory Networks			
	1	Unit –III				
5	Reinforcement Lear	ning for Natural Languag	e Processing	9 hrs		
	Reinforcement Lear	rning for NLP, Semi-supe	ervised Learning for NLP,			
	Future of NLP N	/lodels, Multi-task Lear	rning and QA Systems			
	Reinforcement Lear	ning:				
	Book					
1	. Yoav Goldberg. A	Primer on Neural Netwo	ork Models for Natural La	anguage		
	Processing, 2016.					
	rences:					
1	-	James H. Martin. Speech	and Language Processing	(3rd ed.		
	draft).					
2	2. Ian Goodfellow, Yo	oshua Bengio, and Aaron (Courville. Deep Learning. M	IT Press		

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
I	Q.No1, Q.No2	1, 2	Solve Any 2 out of 3
II	Q.No3, Q.No4	3,4,	Solve Any 2 out of 3
Ш	Q.No5	5	Solve Any 1 out of 2

Prog	ram: Bachelor of Enginee	ring		
Cour	se Title: Bioinformatics		Course Code: 22ECA	E314
L-T-P	: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/w	veek
ISA N	Aarks: 50	ESA Marks: 50	Total Marks: 100	
Teacl	hing Hrs: 40 hrs		Exam Duration: 3 hrs	
		Unit –I		
1	Biological Database:			07 hrs
	Definition, components	s, multidisciplinary nature	, and applications of	
	bioinformatics; Datab	bases: Introduction, me	eaning, types and	
	characteristics of data	bases, types of databases,	Biological database:	
	Classification, Primary	Database: Ligand Databas	e, Enzyme database,	
	human disease datab	ase, microbial and viral,	genome database,	
	structure visualization t	ools.		
2	Pairwise Sequence Alig	nment:		8 hrs
	Definition, significance,	, and applications; Types o	of pairwise sequence	
	alignment: Local and G	lobal alignment; Methods	of pairwise sequence	
	alignment: Dot matrix, Dynamic programming: features of dynamic			
	programming, Global Alignment: Needleman & Wunsch Algorithm,			
	Local Alignment: Smith – Waterman Algorithm, and Word method:			
	BLAST, PSI-BLAST, PHI-BLAST and FASTA; Substitution matrices: PAM and			
	BLOSUM; gap penalties			
		Unit –II		
3	Multiple Sequence Alig	nment:		07 hrs
	Meaning, significance,	and applications; Methods	of MSA: Progressive	
	Alignment methods,	Iterative methods, Local	Multiple sequence	
	Alignment: Profile Analy	ysis, BLOCK analysis, Patter	n searching and Motif	
	analysis, Statistical met	hods or Probabilistic mode	ls; Multiple Sequence	
	Alignment editors.			
4	Phylogenetic analysis			08 hrs
	Meaning and signification	ance; Concepts of evolu	itionary trees: Tree	
	• • • • •	hylogenetic trees; fundame		
	models, Phylogenetic Data Analysis: Alignment: Building the data			
		on of phylogenetic data		
		Models of Substitution Ra		
	_	e Substitution Rate Heter		
		tween Amino Acids; Tree	-	
		ods: Neighbor Joining (
	Margoliash (FM) met	hod; Character based i	methods: Maximum	

	parsimony, Maximum Likelihood; Tree Evaluation methods,			
	Phylogenetic Softwares.			
	Unit –III			
5	Gene Prediction:	05 hrs		
	Gene structure, Prokaryote and Eukaryote gene prediction, Prokaryote			
	and Eukaryote promoter site prediction Gene Prediction tools, Genomic			
	database, Next Generation Sequencing.			
6	Protein Prediction:	05 hrs		
	Protein structures: Secondary Structure: Alpha helix, beta Sheets, phi			
	& psi angles, Ramachandran plots. Protein Structure Prediction:			
	Use of sequence patterns and Amino acid; Protein Secondary Structure			
	Prediction methods: Chou-Fasman, neural network, and nearest			
	neighbor method; Tertiary Structure Predictions: Homology modeling;			
	Protein sequence and structure analysis:			
Text B	kt Books:			
1.	1. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics: A Practical Guide to			
	the Analysis of Genes and Proteins, 3rd, Wiley-Inte, 2005.			
2.	David Mount, Bioinformatics: Sequence and Genome Analysis, 2nd, Col	ld Sprin,		
	2004.			
Refere	nce Books:			
1.	P. Rastogi, N. Mendiritta, S. C. Rastogi, Bioinformatics: Methods and Appli	cations:		
	Genomics,			
2.	Anand Solomon K, Molecular Modelling and Drug Design , 1st, MJP Publ	is, 2015		

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	

Prog	ram: Bachelor of Engine	ering			
Cour	rse Title: Computer Grap	hics	Course Code: 22ECA	E315	
L-T-P	P: 3-0-0	Credits: 3 Contact Hrs: 3 hrs/week			
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	hing Hrs: 40		Exam Duration: 3 Hr	S	
	Unit –I				
	Introduction				
	Image Processing as I	Picture Analysis, The Adva	ntages of Interactive		
1	Graphics. Representati	ve Uses of Computer Grap	hics, Classification of	06 hrs	
	Applications. Developr	nent of Hardware and Sof	tware for Computer		
	Graphics, Conceptual F	ramework for Interactive Gra	aphics		
	Basic Raster Graphics A	Algorithms for Drawing 2d P	rimitives		
2	Overview, Scan Conv	erting Lines, Scan Conve	rting Circles, Filling	08 hrs	
2	Rectangles. Filling Polygons, Filling Ellipse Arcs, Pattern Filling, Thick				
	Primiives, Line Style and	d Pen Style.			
	Clipping in a Raster Wo	orld			
3	Clipping Lines, Clipping Circles and Ellipses, Clipping Polygons.				
	Antialiasing				
	1	Unit –II			
	Geometric Objects and				
		ectors, Three-Dimensional F			
4		ames in OpenGL. Modeling a		07 hrs	
	Transformations, Translation, Rotation, and Scaling, Transformations in				
	Homogeneous Coordinates, Concatenation of Transformations, OpenGL				
	Transformation Matrices				
	Viewing				
		Viewing, Viewing with a Cor		-	
5		ojections, Projections in Ope		07 hrs	
	Removal, Interactive Mesh Displays, Parallel- Projection Matrices,				
		Matrices, Projections and Sh	adows		
	Representing Curves		_ .	06 hrs	
6	Polygon Meshes, Parametric Cubic Curves: Hermit curves, Bezier curves,				
	B-Splines				
		Unit –III			
_	Lighting			05.1	
7	-	ight Sources, The Phong		05 hrs	
	Computation of Vecto	rs , Light Sources in OpenGL			

8	5	Shading Polygonal Shading, Approximation of a Sphere by Recursive Subdivision Specification of Materials in OpenGL, Shading of the Sphere Model Global Illumination	05 hrs
Т	ext	Books:	

- 1. Computer Graphics: Principles and Practice, James D. *Foley*, Andries *van Dam*, Steven K. Feiner, John F. Hughes ,2nd Edition, Pearson Education, 2008
- 2. Interactive Computer Graphics A Top-Down Approach Using OpenGL (5/e), Edward Angel, 5th Edition, Pearson Education, 2009

Reference Books:

- 1. Computer Graphics using OpenGL , F. S. Hill Jr. and S. M. Kelley , 3rd Edition, Pearson Education, 2009
- 2. Computer Graphics with OpenGL ,D. D. Hearn and M. P. Baker, 3rd Edition Computer Graphics , Peter Shirley, Steve Marschner, Cengage Learning, 2009

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
	Q.No7	6	Solve Apy 1 out of 2
111	Q.No8	7	Solve Any 1 out of 2

Progra	am: Bachelor of Engineer	ing			
Cours	e Title: Multimedia Com	puting	Course Code: 22ECA	316	
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3 hrs/w	veek	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 40	Tutorial/Practical:	Exam Duration: 3 Hr	S	
		Unit –I			
	Introduction to multim	edia:			
	Global structure of N	Iultimedia, Multimedia A	pplication, Medium,		
1	Multimedia system and properties, Characteristics of a Multimedia			04 hrs	
	System, Challenges f	or Multimedia Systems,	Components of a		
	Multimedia System				
	Sound / Audio System				
2	Concepts of sound sys	stem, Music and speech,	Speech Generation,	06 hrs	
	Speech Analysis, Speech	n Transmission			
	Images and Graphics:				
3	Digital Image Represe	ntation, Image and grap	hics Format, Image	06 hrs	
	Synthesis, analysis and Transmission.				
	-	Unit –II			
	Video and Animation:				
4	Video signal representation, Computer Video Format, Computer- Based				
-	animation, Animation Language, Methods of controlling Animation,				
	Display of Animation, and Transmission of Animation.				
	Content Analysis:				
5	Simple Vs. Complex Features; Analysis of Individual Images; Analysis of			08hrs	
	Image Sequences; Audi	o Analysis; Applications.			
	Γ	Unit –III			
	User Interfaces				
7	U ,	ideo and Audio at the L	Jser Interface, User-	04 hrs	
	friendliness as the Prim	•			
	Multimedia Application				
		and composition, Medi	0		
8		Entertainment, Telemedici		04 hrs	
	video editing and production systems, Video conferencing, Video-on-				
	demand				
Text B					
1.		g, Communications and Ap	plications, Ralf Steinm	netz and	
Klara Nahrstedt, Pearson Education Asia.					

Reference Books:

- 3. Multimedia Communications, Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education Asia
- 4. Multimedia Systems, John F. Koegel Buford, Pearson Education Asia

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
ш	Q.No7	6	Solve Any 1 out of 2
	Q.No8	7	

Prog	gram: Bachelor of E	ngineering			
Cou	rse Title: Algorithm	ic Problem Solving	Course Code: 23EC	SE309	
L-T-F	P: 2-0-4	Credits: 6	Contact Hrs: 10 hrs	rs/week	
ISA I	ISA Marks: 70 ESA Marks: 30 Total Marks: 100		Total Marks: 100		
Теас	ching Hrs: 30	Tutorial/Practical: 112hrs	Exam Duration: NA		
Unit –I					
1	Design Philosop	hy and Reflections:			
	Algorithm Desig	gn Techniques and Principles,	Case Studies and		
	Reflections			5 hrs	
2	Advanced Data	Structures:			
	Tricks and Techni	iques, Matrix, Grids, Trees and Vari	ants, Lists, Skip lists,		
	Hash, Trie, Unior	n-Find and Variants		5 hrs	
3	Dynamic Program	mming:			
	Common and Typical Problem Sets, Idea and Intuition, Design of DP				
	Problems	Problems 5 hrs			
4	Array Query:				
	Need, Types and Variants, Design and Philosophy, The Pathway From				
	Lookup Table Fenwick Trees.			5 hrs	
5	Search Space An	alysis:			
	Search Space, Gr	aph Algorithms, Heuristic Space Ar	nalysis	5 hrs	
6	Problem Solving	:			
	Assortment of Pr	oblems, CSES Problem Set		5 hrs	
Text	Books				
1.	Levitin A., "Introdu	iction to the Design and Analysis of	of Algorithms", Third	Edition,	
	Pearson Education, 2017.				
2.		. 2017. A, "Algorithmic Puzzles", First Edit	ion, Oxford Universit	y Press,	
2.			ion, Oxford Universit	y Press,	
	Levitin A, Levitin N	Л, "Algorithmic Puzzles", First Edit	ion, Oxford Universit	y Press,	
3.	Levitin A, Levitin N 2011.	Л, "Algorithmic Puzzles", First Edit	ion, Oxford Universit	y Press,	

"Introduction to Algorithms", Third Edition, MIT Press, 2010.

UNIT	Questions	Chapter numbers	Instructions
I	6 to 8 questions	1,2,3,4,5,6	Solve all

Scheme for End Semester Assessment (ESA)

Lab Experiments:

Experiment No.	o. Concept	
1	Design Techniques and Reflections	8
2	Mathematics in Competitive Programming	16
3	Dynamic Programming	16
4	Array Query and Case Studies	16
5	Search Space Analysis	16
6	Problem Assortments	16
7	CSES Problem Set	16

Prog	ram: Bachelor of Eng	ineering			
Cour	rse Title: Ethics in Al		Course Code: 23EC	CAE325	
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs	/week	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100					
Теас	Teaching Hrs: 40 Exam Duration: 3		hrs		
		Unit –I			
	Introduction to Ethical AI: Cause and Effect:				
1	Algorithms, AI and	Model Outcomes, Rules for	AI: training and	6hrs	
	constraints, Ethical A	Al: Cause and Effect.			
	Artificial Intelligence	e Data Fairness and Bias:			
2	Fairness and protect	ions in machine learning, Fairne	ss and protections	7hrs	
	in machine learning,	building fair models, minimizir	ng bias in data.		
		Unit –II			
	Artificial Intelligence	e Privacy and Convenience :			
3	Privacy and convenion	ence vs big data, Protecting Priv	vacy: Theories and	6hrs	
	Methods, Building T	ransparent Models			
	Al Fairness :				
4	Individual fairness, Group fairness, Counterfactual fairness, Fairness in				
-	natural language processing, Fairness in computer vision, Deepfakes,				
	Federated learning				
		Unit –III			
	Artificial Intelligence	e Ethics in Action:			
5	Case Study: AI for	Healthcare Domain, AI for Ed	ge Device, AI for	5hrs	
	Agriculture, AI for N	LP			
Text	Books:				
1.	Coeckelbergh, Marl	k. Al ethics. MIT Press, 2020.			
Refe	rence Books:				
1.	Boddington, Paula.	Towards a code of ethics for a	rtificial intelligence.	Cham:	
	Springer, 2017.				

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
	Q.No7	5	Solve Any 1 out of 2
	Q.No8	5	Solve Any I Out Of Z

<u>BACK</u>

Prog	Program: Bachelor of Engineering				
Cour	se Title: DevOps		Course Code: 23ECAE3	18	
L-T-P	: 1-0-2	Credits: 3	Contact Hrs: 5hrs/wee	k	
ISA N	/larks: 80	ESA Marks: 20	Total Marks: 100		
Teac	hing Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs		
		Unit –I			
1	Introduction to D	evOps and Continuous Deli	very		
	Introducing DevC	ps, The Agile wheel of wh	neels, DevOps and ITIL,		
	Infrastructure As a	A Code, Continuous Integrat	tion and Development.	4hrs	
2	Linux and Automa	ation			
	User Manageme	ent, Package Managemer	nt, Networking, Shell		
	Variable, Decision	n making, Shell test condi	itions, Shell loops, Re-		
	directors, Exit stat	tus.		4hrs	
3	AWS Cloud				
	Introduction to cl	oud computing & AWS, Re	gions & AZ's, EC2, EBS,		
	EFS, Auto scalir	ng, Load balancing & Ro	oute 53, VPC, Object		
		& Monitoring(Cloudwatch),	Database Services, AWS		
	Lambda & CLI			6hrs	
	Γ	Unit –II		Γ	
4	Version Control w				
		g and merging, Git Overviev			
	-	erging changes, Create a re	epo and push code on		
	GibHub / Bitbucke			4hrs	
5	-	ntion using Jenkins			
		ip & Launch Jenkins, Creatin			
	••• /	Id Pipeline plugin in Jenkins			
	-	ng a job using Poll SCM, Dis	tributed Architecture in	76.40	
-	, ,	nux slave to jenkins master		7hrs	
6	-	nagement using Ansible	nt Ad Llos commonds		
	-	al infrastructure developme			
	Playbooks, Playbooks organization – Roles & Includes, Inventories, Ansible for AWS			7hrs	
	Allsible for AWS	Unit –III		71115	
7	Containers				
		epts, Container Vs Virt	ual Machine Docker		
		aging Container with Dock			
		images, Docker Compose, I	. –		
		inside single docker contain	•	6hrs	
				51115	

8	Continues Monitoring using Prometheus and Grafana				
	What is continues monitoring, Goals, Types of Continues monitoring,				
	Prometheus installation, Grafana installation, Integration of				
	Prometheus and Grafana, Adding customised dashboard in Grafana,				
	Introduction to node exporter, Integrating node exporter for				
	monitoring, Monitoring docker and containers	4 hrs			
Text B	ooks:				
1.	Joakim Verona, "Practical DevOps." Packt Publishing Ltd, Feb. 20	016, ISBN:			
	9781785882876				
2.	Jeff Geerling, "Ansible for DevOps: Server and configuration manage	ement for			
	humans." Leanpub, 2015.				
3.	John Ferguson, "Jenkins: The Definitive Guide" Smart Publisher: O'Re	illy Media,			
	Release Date: June 2016.				
Refere	ence Books:				
1.	Jennifer Davis, Ryn Daniels, "Effective DevOps, Building a C	Culture of			
	Collaboration, Affinity, and Tooling at Scale", Publisher: O'Reilly Med	ia, Release			
	Date: June 2016.				
2.	Gene Kim, Patrick Debois, John Willis, Jez Humble, "The	DevOps			
	Handbook: How to Create World-Class Speed, Reliability, and S	ecurity in			
	Technology Organizations", IT Revolution Press, 2016.				

BACK

Progra	am: Bachelor of Engine	eering		
Cours	e Title: Cloud computi	ng	Course Code: 22ECAE3	17
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 4 hrs/wee	k
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction:			
1	Motivation for cloud computing, elastic computing and its advantages:			
	Business models for cloud providers, Types of clouds: multi-cloud, cloud			
	platforms. Data center infrastructure: Network equipment and multi-			
	port server interfaces	s, Leaf spine network topolo	gy.	
	Virtualization and co	ntainerization:		
		pproaches to virtualizatior		
	-	machines. Advantages and c	-	
2	machines, isolation facilities in an operating system, Linux namespaces			4 hrs
	used for isolation, container approach for isolated apps, Docker			
	containers, Docker software components, items in a Dockerfile.			
	Monolithic applicatio			
	Automation and One	Unit –II		
	Automation and Orc		amation target	
	Automation in data centers, levels of automation, zero touch			
3	provisioning and Infrastructure as code, automation tools, Orchestration: Automation with a larger scope, Kubernetes: An example container			
5	orchestration system, Kubernetes cluster model, Kubernetes pods:			
	creation, templates, and binding time, Kubernetes nodes and control			
	plane, worker node software components.			
	Microservices:	F		
		approach, advantages a	nd disadvantages of	
4	Microservices, Micros	services Granularity, Commu	nication protocols used	4 hrs
	for Microservices, c	communication among Mic	croservices, creating a	
	Microservices, server	⁻ mesh proxy.		
		Unit –III		
	Serverless computing	g and event processing :		
	Traditional client-ser	rver architecture, scaling	a server in a cloud	
5		less computing approach,		3 hrs
		ure of a Serverless infrastr		0.110
		g, advantages and disadv	antages of Serverless	
	computing.			

DevOps for cloud:

c	Introduction to DevOps, DevOps tools: Puppet, Chef and Ansible.	2 has
D	Configuration management using Ansible, Ansible- Modules, Ad Hoc,	5 nrs
	Playbooks, Ansible for IT automation.	

Text Books:

- 1. Douglas Comer, "The Cloud Computing: The Future of Computing", 1st ed, Chapman and Hall/CRC 1 July 2021.
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, 3rd Edition, Elsevier February 15, 2022.

Reference Books:

- 1. Rajkumar Buyya, Christian Vecchiola, S.ThamaraiSelvi, Mastering Cloud Computing, McGraw Hill, 2013.
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach,
- 3. McGraw Hil, 2010.

<u>BACK</u>

Prog	ram: Bachelor of Engineer	ing			
Cour	se Title: Data Integration	and Cloud Services	Course code: 22	CAE319	
L-T-P	9: 0-0-3	Credits: 3	Contact Hrs: 6hr	rs/week	
ISA N	ISA Marks: 80 ESA Marks: 20 Total Marks: 100				
Teaching Hrs: Tutorial/Practical: 84hrs Exam Duration:		3 hrs			
		Unit - I			
1	Data Integration for Dev	elopers: Introduction to Powe	rCenter, Folders,		
	Sources, and Targets, Des	sign Objects, File Lookups, Rel	ational Lookups,		
	Database Joins in Power	Center, Workflow Logic, Mergi	ng, Routing, and		
	Sorting Data, Command	Tasks, Debugging, Parameteri	zation, Updating	20 hrs	
	Database Tables, Mapple	ts, Mapping Design Workshop	, Addendum.		
2	PowerCenter Architectu	are and Transformations:	PowerCenter 10		
	Architecture, Parameter	Files, User-Defined and Adva	nced Functions,		
	Pivoting Data, Dynam	ic Lookups, Stored Proce	dure and SQL	20 hrs	
		eshooting Methodology and	— ··		
		Transaction Control Transform			
	-	ams, Performance Tuning			
	-	Mapping Design, Memory	Optimization,		
	Performance Tuning: Pipe				
3		ation Services: Overview of C			
	• ·	the Basics: Process Designe		10 hrs	
		ices to a Process, Fault Handl	<u> </u>		
	Troubleshooting, Tips & T	PI Management, CAI and	CDI Integration,		
4	- · ·	Services: Informatica Cloud Ov	varviow Runtima		
4	-	ections, Synchronization Task,	-	10 hrs	
		ing Designer – Transforma		10 1113	
		Macro and Dynamic Linking,			
		tion Task, Task flows, Hierarch	-		
	Intelligent Structure Mod				
Text	book:				
1	Learning Informatica	PowerCenter 10.X, Second	Edition, Rahul I	Valewar,	
	Publisher: Packt, 2017.				
Refe	rence book:				
1	Data Mining Concepts	and Techniques, Third Edition	on, Jiawei Han, N	/licheline	
	Kamber, Jian Pei, Publis	her: Elsevier, 2012.			

Prog	gram: Bachelor of Eng	ineering		
Cou	rse Title: Blockchain a	nd Distributed Ledgers	Course Code: 23ECAE3	24
L-T-I	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/wee	k
ISA	Marks: 100	ESA Marks: NA	Total Marks: 100	
Теас	ching Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: NA	
		Unit –I		
1	Introduction			
	Overview of block of	hain, Digital Money to Distr	ibuted Ledgers, Design	
	Primitives: Protocols,	Security, Consensus, Types of	block chain, block chain	06 hrs
	platforms, Block cha	in Architecture, Block chain	Use Cases: Finance, E-	00 1113
	Governance, Supply	chain management, Health	care management and	
	cyber security.			
2	Cryptography Basics			
	Introduction to crypt	ography, Public key crypto: Ir	ntroduction, RSA, Public	06 hrs
	key infrastructure, H	lash Functions: Properties of	f Hash Functions, SHA,	•••••••
	Digital signature Schemes, Merkle trees.			
		Unit –II		
3	Consensus Mechanis			
		uted Systems, Consensus me		
		of of Work, Proof of Stake (06 hrs
	-	oof of Elapsed Time. Cons		
		nain: RAFT, Practical Byzantine	e Fault Tolerance (PBFT),	
	Scalability of consens			
4	Ethereum and Smart			
		ons, accounts, smart cont		• • •
	•	y basics, basic contracts, distri	-	06 hrs
		oplications of Ethereum Smar		
	loken Standards, Fun	igible and Non-Fungible Token	s, crowd funding	
Unit –III				
5	Enterprise Blockchai			
		Introduction, Architecture, Ide		06 hrs
		Chain codes. Corda: Principal		55115
	CorDapp. Consensus	Mechanisms in Hyperledger F	auric and Corda.	

Reference Books:

- 1. Imran Bashir "Mastering Blockchain ", 3st Edition, Packt Media, 2020.
- 2. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.
- 3. ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", 1st Edition, VPT, January 31, 2017.

Evaluation Scheme

Assessment	Weightage in Marks
Mid Term	25
Exercises	25
Project	50
Total	100

Laboratory Plan List of Exercises

Brief description about the experiment/job	No. of Lab. Slots			
Overview and Demonstration of Ethereum smart contracts	1			
Solidity programming- Data types, control structures and functions	1			
Deploying contract using external blockchain using Metamask/Myetherwallet	1			
Creating custom Ethereum blockchain using Geth	1			
Connecting to Geth node using Web3	1			
Create distributed storage using IPFS.	1			
Connect IPFS to Ethereum and Hyperledger Fabric	1			
Course Project	7			
	Overview and Demonstration of Ethereum smart contracts Solidity programming- Data types, control structures and functions Deploying contract using external blockchain using Metamask/Myetherwallet Creating custom Ethereum blockchain using Geth Connecting to Geth node using Web3 Create distributed storage using IPFS. Connect IPFS to Ethereum and Hyperledger Fabric			

Progr	am: Bachelor of Engineer	ring		
Cours	e Title: Parallel Computi	ng	Course Code: 22ECAE	320
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 03 hrs/w	eek
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100 Exam Duration: 03 hrs	
Teach	ing Hrs: 40			
		Unit –I	I	
1	Introduction to Paralle	l Computing & Parallel Pr	ogramming Platforms	8 hrs
	Motivating Parallelism,	Scope of Parallel Computir	ng, Implicit Parallelism:	
	Trends in Microprocess	or Architectures, Limitatic	ons of Memory System	
	Performance, Dichotor	my of Parallel Computin	g Platforms, Physical	
	Organization of Paralle	el Platforms, Communica	tion Costs in Parallel	
	Machines.			
2	Principles of Parallel Al			8 hrs
		osition Techniques, Chara		
		Techniques for Load Ba	-	
	Containing Interaction	Overheads, Parallel Algorit	hm Models.	
	Unit –II			
3	Analytical Modeling of Parallel Programs		8 hrs	
	Sources of Overhead in Parallel Programs, Performance metrics for parallel systems, The effect of Granularity on performance, Scalability			
		· ·	•	
	-	num execution time and r	-	
	Scalability Metrics.	nptotic analysis of Para	nei programs, Other	
4		e Message Passing Paradi	gm	8 hrs
-		- Passing Programming, Th	-	0 1113
		sing Interface, Overlapping	- ·	
		e Communication and Cor		
	Groups & Communicato		р,	
	I • • • • • • •	Unit –III		
5	Pthreads and Synchron	nization		4 hrs
		read API, Synchronization	Primitives in Pthreads,	
	Controlling Thread and	Synchronization Attribute	s, Thread Cancellation,	
	Composite Synchroniza	tion Constructs.		
6	OpenMP			4 hrs
	Open MP programm	ning model, Specifying	tasks in openMP,	
	Synchronization constru	ucts in opn MP, Data hand	lling in OpenMP, Open	
	MP library functions, Er	nvironment variables in Op	oenMP, Explicit Thread	
	versus OpenMP based	programming.		

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

Reference Books:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Solve Any 1
	Q.No8	5	

Scheme for End Semester Assessment (ESA)

Progr	am: Bachelor of Enginee	ring			
Cours	se Title: Quantum Compu	ting	Course Code: 22ECA	E321	
L-T-P:	: 3-0-0	Credits: 3	Contact Hrs: 3hrs		
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ning Hrs: 40	g Hrs: 40 Exam Duration: 3hrs		5	
		Unit –I			
1	Introduction and Back	round:			
	Overview, Computers a	nd the Strong Church–Turi	ng Thesis, The Circuit		
	Model of Computation	, A Linear Algebra Formu	lation of the Circuit		
	Model, Reversible Co	mputation, A Preview o	f Quantum Physics,		
	Quantum Physics and C	omputation		6 hrs	
2	Linear Algebra and the	Dirac Notation:			
	The Dirac Notation and	d Hilbert Spaces, Dual Veo	ctors, Operators, The		
	Spectral Theorem, Fu	nctions of Operators, Te	ensor Products, The		
	Schmidt Decompositio	n Theorem, Some Comr	ments on the Dirac		
	Notation			6 hrs	
3	Introduction to Quantum Toolbox in Python:				
	Installation, Basics and Quantum mechanics		4 hrs		
	1	Unit –II		1	
4	-	ork of Quantum Mechani			
		m System, Time-Evolution	•		
		asurement, Mixed States a			
	Operations, Mixed State	es, Partial Trace, General Q	uantum Operations	6 hrs	
5	A Quantum Model of C	•			
		: Model, Quantum Gat			
		niversal Sets of Quantum	· ·		
		Transformations, Impleme	nting Measurements	_	
	with Quantum Circuits			6 hrs	
6	Problems and Project:				
		Solving Problems / Proje	ects using Quantum		
	Computing.			4 hrs	
		Unit –III			
7	Introductory Quantum	•			
		intum Algorithms, Phase Ki			
	-	–Jozsa Algorithm, Simon's	-	4 hrs	
8	-	cts done during the course			
	Image processing, Data	Sciences, Machine Learnin	ig, Networking	4 hrs	

Text Books

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing ", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Solve Any 1
	Q.No8	8	

Progra	am: Bachelor of Engine	ering		
Course	e Title: The ARM Archit	ecture	Course code:22EC	AE322
L-T-P:	2-1-0	Credits: 3	Contact Hrs: 4 hrs	/week
ISA Ma	arks: 50	ESA Marks: 50	Total Marks: 100	
Teachi	ing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3	hrs
		Unit –I		
1	ARM Embedded Syste	ems and Processor Fundame	entals	06 hrs
	The RISC Design Philos	ophy , The ARM Design Philo	osophy, Embedded	
	System Hardware, Em	nbedded System Software,	Registers, Current	
	Program Status Regis	ter, Pipeline, Exceptions, In	terrupts, and the	
	Vector Table, Core	Extensions, Architecture I	Revisions, ARM	
	Processor Families			
2		RM Instruction Set & Assem		06 hrs
	U	tructions, Branch Instruct		
		Interrupt Instruction, Progra	-	
	Instructions, Loading Constants, ARMv5E Extensions, Conditional			
Execution, Thumb instruction set.				
2	Unit –II			
3	Efficient C Programmi	-	o C Doto Turoso C	06 hrs
	Overview of C Compilers and Optimization, Basic C Data Types, C			
	Looping Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure Arrangement, Bit-fields,			
	Unaligned Data and Er	-		
4		ng ARM Assembly Code		06 hrs
•	•	de, Profiling and Cycle Cou	Inting. Instruction	001110
		Allocation, Conditional Ex	•	
		ulation, Efficient Switches, H		
	Data.			
I		Unit –III	I	
5	Introduction to LPC-2	148 controller		03 hrs
	Input output Ports, Pir	n select registers, Input outp	ut select registers,	
	direction control and control registers, Introduction to interfacing			
	standards			
6	ARM Interfacing			03 hrs
	•	peripherals like LED, LCD,	Seven segments,	
	Motors, Converters, K			

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

- 1. Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2. Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Expt./ Job No.	Assignments/experiment	No. of Lab. Slots per batch	
500 1101		(estimate)	
1	ALP on arithmetic instructions set	01	
2	ALP on logical instructions set	01	
3	ALP on loop and branch instructions	01	
4	Interface LED and Seven segments to ARM for	01	
4	displaying message.		
5	Interface LCD to ARM for displaying message.	01	
6	Interface Keypad to read the characters	01	
7	Rotate DC and stepper motor for variable speed	01	
/	and direction		
8	Interface DAC to ARM controller	01	

Tutorial Plan

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
	Q.No7, 8	5	Solve Any 1 out of 2

Prog	ram: Bachelor of Enginee	ring			
		s Automation Design &	Course Code: 22ECA	E323	
	lopment				
	:3-0-0	Credits: 3	Contact Hrs: 3hrs/we		
	/larks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 Exam Duration: 3 hrs				'S	
	1	Unit –I		[
1	Programming Basics & Recap:			6 hrs	
	Programming Concepts Basics - Understanding the application - Basic				
	Web Concepts - Protoco	ols - Email Clients Data Stru	uctures - Data Tables		
	- Algorithms - Software	Processes - Software Desi	ign - ScriptingNet		
	FrameworkNet Fu	ndamentals - XML - Con	trol structures and		
	functions - XML - HTML	- CSS - Variables & Argume	nts.		
2	Rpa Concepts:			10 hrs	
	RPA Basics - History of A	Automation - What is RPA -	RPA vs Automation -		
	Processes & Flowchart	ts - Programming Constru	icts in RPA - What		
	Processes can be Auton	nated - Types of Bots - Wor	kloads which can be		
	automated - RPA Advanced Concepts - Standardization of processes -				
	RPA Developemt methodologies - Difference from SDLC - Robotic				
	control flow architecture - RPA business case - RPA Team - Proccess				
	Design Document/Solution Design Document - Industries best suited				
	for RPA - Risks & Challenges with RPA - RPA and emerging ecosystem.				
		Unit –II			
3	Rpa Tool Introduction 8	& Basics:		8 hrs	
	Introduction to RPA To	ol - The User Interface - V	ariables - Managing		
	Variables - Naming Best	Practices - The Variables P	anel - Generic Value		
	Variables - Text Variable	es - True or False Variables -	- Number Variables -		
	Array Variables - Date	and Time Variables - Dat	ta Table Variables -		
	Managing Arguments -	Naming Best Practices - Th	e Arguments Panel -		
	Using Arguments - Ab	out Imported Namespace	es - Importing New		
	Namespaces- Control	Flow - Control Flow Int	roduction - If Else		
	Statements - Loops - Ad	lvanced Control Flow - Sequ	ences - Flowcharts -		
	About Control Flow - Co	ontrol Flow Activities - The	Assign Activity - The		
	Delay Activity - The Do While Activity - The If Activity - The Switch				
	Activity - The While Act	ivity - The For Each Activity	- The Break Activity		
	- Data Manipulation - Da	ata Manipulation Introducti	on - Scalar variables,		
	collections and Tables	- Text Manipulation - D	ata Manipulation -		
	Gathering and Assembl	ing Data			

4	Advanced Automation Concepts And Techniques:	8 hrs
	Recording and Advanced UI Interaction - Recording Introduction - Basic	
	and Desktop Recording - Web Recording - Input/Output Methods -	
	Screen Scraping - Data Scraping - Scraping advanced techniques -	
	Selectors - Selectors - Defining and Assessing Selectors - Customization	
	- Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge -	
	Image, Text & Advanced Citrix Automation - Introduction to Image &	
	Text Automation - Image based automation - Keyboard based	
	automation - Information Retrieval - Advanced Citrix Automation	
	challenges - Best Practices - Using tab for Images - Starting Apps - Excel	
	Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics -	
	Data Manipulation in excel - Extracting Data from PDF - Extracting a	
	single piece of data - Anchors - Using anchors in PDF.	
	Unit –III	
5	Email Automation & Exceptional Handling:	8 hrs
	Email Automation - Email Automation - Incoming Email automation -	
	Sending Email automation - Debugging and Exception Handling -	
	Debugging Tools - Strategies for solving issues - Catching errors.	
Text B	ooks:	
1.	Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Page	ckt
	Publishing	
	Release Date: March 2018 ISBN: 9781788470940	
	ence Books:	
1.	Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author),	
	Livingston (Author), Introduction to Robotic Process Automation: a	Primer,
	Institute of Robotic Process Automation.	
2.	Richard Murdoch, Robotic Process Automation: Guide To Building Se	oftware
	Robots, Automate Repetitive Tasks & Become An RPA Consultant	
3.		ion and
	their benefits: Understanding RPA and Intelligent Automation	
4.	https://www.uipath.com/rpa/robotic-process-automation	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
UNIT	Marks Each	Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	5	Solve Ally I

<u>BACK</u>

Semester – VII

Prog	Program: Bachelor of Engineering Semester - VII					
Cour	Course Title: Big Data and Analytics Course Code: 22ECAC			101		
L-T-P	-T-P: 2-0-1 Credits: 3 Contact Hours: 4 hrs/V		Week			
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100					
Teaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 3 hrs						
		Unit –I				
1.	Introduction: Overvi	ew of Big data, Big Data Ch	aracteristics, Different	4 hrs		
1.	Types of Data. Data A	nalytics, Data Analytics Life Cy	cle.	4 111 5		
	Big Data Storage: C	lusters, File Systems and Dis	tributed File Systems,			
2.	NoSQL, Sharding, Re	plication, Combining Sharding	g and Replication. On	4 hrs		
	Disk Storage Devices,	In-memory Storage Devices				
3.		Oocument-oriented, Column-o	riented, Graph-based,	4 hrs		
	MongoDB.					
	T	Unit – II				
4.	Big Data Processing : Parallel Data Processing, Distributed Data Processing,			6 hrs		
	Hadoop, Map Reduce, Examples on MapReduce, Spark.					
	-	Introduction to Stream Pro	-			
	-	Examples of Stream Processi	• • • •			
5.	- ·	ited Stream Processing; Strea	-	6 hrs		
		Immutable Streams Defined				
		Aggregations, Window Aggre	gations, Stateless and			
	Stateful Processing.	114:4 111				
	Pig Data Analysis -	Unit – III	Data Typos Dunning			
		Pig- Introduction, Pig Primitive es of Pig – HDFS Commands -				
6.	-	-	•	3 hrs		
0.	Eval Function - Complex Data Types - Piggy Bank - User-Defined Functions - Parameter Substitution - Diagnostic Operator - Word Count Example			5 11 5		
	using Pig - Pig at Yahoo! - Pig Versus Hive					
	Big Data Visualization : Hive – Introduction, Hive Architecture, Hive Data					
	-	Format, Hive Query Lang	-			
7.	Implementation, User-Defined Function (UDF). Serialization and		3 hrs			
	Deserialization.					

Text Books:

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley India Pvt Ltd 2014.
- 3. Gerard Maas and François Garillot, Stream Processing with Apache Spark Mastering Structured Streaming and Spark Streaming, O'REILLY,2019

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Credit: 1	Big Data and Analytics Lab
	Preamble:
	Data is created constantly, and at an ever-increasing rate. Mobile phones, social media, imaging technologies to determine a medical diagnosis—all these and more create new data, and that must be stored somewhere for some purpose. Devices and sensors automatically generate diagnostic information that needs to be stored and processed in real-time. Merely keeping up with this huge influx of data is difficult, but substantially more challenging is analyzing vast amounts of it, especially when it does not conform to traditional notions of data structure, to identify meaningful patterns and extract useful information. These challenges of the data deluge present the opportunity to transform business, government, science, and
	everyday life.
	Objective: The student should be able to use Big Data and Analytics
	Frameworks and tools for handling, processing, and analyzing huge datasets.
	Team size: Group of 3- 4
	Type: Each batch will work for one distinct application area

SI.	Experiments	со	Blooms	Timeline PI Hrs		Hrs	Marks
No.	Experiments	co	level	w.r.t COE	code	піз	IVIALKS
1.	Hadoop Installation Assignment of the following application areas to each batch: 1) Financial Data Analysis 2) Market-Basket Analysis 3) Telecommunication Industry 4) Health Care 5) Agriculture 6) Public Security 7) Bio-informatics Others	CO1	L3	1 st &2 nd week	1.4.1	4	Nil
2.	Problem Identification (10 M) a) Learning the domain (2M) b) Assessment of resources available(2M): i) Data ii) People iii) Technology iv) Time c) Framing the Problem (Identifying Issue to be addressed) (2M) d) Developing Initial Hypothesis (2M) Identifying potential Data sources (2M)	CO1	L3	3 rd Week	2.3.1	2	10
3.	Data/File handling on DFS through NoSQL, Sharding, and Replication	CO2	L3	4 th Week	2.3.1	4	Nil
4.	 Data Preparation: (10M) a) Preparing the Analytic Sandbox (2M) b) Performing ETLT (2M) c) Data Conditioning (3M) Data Visualization (3M) 	CO2	L3	5 th & 6 th Week	1.4.3	4	10

5.	Design and Model Selection	CO2	L3	7 th & 8 th Week	2.3.1	4	10
6.	Implementation	CO3	L3	9 th , 10 th & 11 th Week	5.3.1	6	10
7.	Presentation and Report	CO4	L3	12 th Week	10.1. 2	2	10
					Total	28	50

UNIT	UNIT 8 Questions to be set of 20		Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
	Q.No7	6	Solve Any 1
	Q.No8	7	Solve Any I

Prog	ram: Bachelor of Engineer	ing	Semester - VII		
Course Title: Information Security Cours		Course Code: 22ECAC	402		
L-T-F	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/we	ek	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs		
		Unit –I			
1.	Introduction: Introduct	ion, OSI Security archite	cture, Secure design	6 hrs	
	principles, A model for r	network security, Classic Cry	ypto: Substitution and		
	Transposition ciphers, Tax	conomy of Cryptography and	d Cryptanalysis.		
2.	Cryptographic Algorithm	s: Symmetric Key Crypto: S	Stream ciphers, Feistel	6 hrs	
	Cipher, Block Ciphers-AES	5, DES, IDEA, Block cipher m	odes, Asymmetric Key		
	Crypto: Knapsack, Diffie	-Hellman, Elgamal cryptos	system, Elliptic Curve		
	Cryptography				
		Unit –II			
3.	Key management and U	ser authentication: Key ma	nagement: Symmetric	6 hrs	
	key distribution, Distribution of public keys, Kerberos, Symmetric key				
	agreement, Public key distribution. User authentication: Overview,				
	Passwords, Challenge response, Zero knowledge proof, Password cracking,				
	Biometrics.				
4.	Network access control	and Cloud Security: Net	twork access control:	6 hrs	
	Overview, Network acces	ss enforcement methods, A	Access Control Matrix,		
	Multilevel Security Mo	dels, Multilateral Security			
	detection system, Cl	i i	Security risks and		
	countermeasures, data p	rotection in cloud, cloud sec	curity as a service.		
		Unit –III			
5.		ort Security Protocols: Intro		3 hrs	
		ure Socket Layer, Transport I			
6.	Network and Wireless S	ecurity Protocols: IPSec ov	verview, Encapsulating	3 hrs	
	security payload, combir	ing security associations, I	nternet key exchange,		
GSM Security, IEEE 802.11 Wireless LAN Security.					
Text Book					
1	L. William Stallings, Crypto	ography and Network Securi	ty Principles and Practic	es <i>,</i> 8th	
	Edition, Pearson, 2020				
2. Mark Stamp, "Information Security: Principles and Practices", 3 rd Edition, J					
	Wiley and Sons, 2021.				

References

- 1. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography", 3rd edition, CRC Press, 2020.
- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2015.

ISA Scheme			
Assessment	Weightage in Marks		
ISA 1	15		
ISA 2	15		
Project/ Certification	20		
Total	50		

Evaluation Scheme

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots (each lab 2 hours)
1.	Demo and practice on Crypto Library	2
2.	Implementation of symmetric key algorithm	2
3.	Implementation of Asymmetric key algorithm and Hash functions	2
4.	Course project	8
	14*2=28	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	Solve Arty I

Program: Bachelor of Engineering		Semester - VII	
Course Title: Senior Design Project		Course Code: 22ECAW401	
L-T-P: 0-0-6 Credits: 6		Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: Tutorial/Practical: 42 hrs		Exam Duration: 3 hrs	

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles - design patterns (creational, behavioral & structural),

User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project Domains:

Networking	Data Engineering	System Engineering	
 Internet of Things 	 Data Analytics 	Parallel	
 Cloud Computing 	Data Processing:	Computing	
• SDN (Software	 Image and video 	● HPC (High	
Defined Network)	processing	Performance	
 SNA(Social 	 Computer Vision and 	Computing)	
Network Analysis)	Graphics	 Parallel system 	
	 NLP(Natural Language 	design	
	Processing)		

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation		
Review-1	Literature Survey, Problem Analysis and Problem formulation		
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.		
Review-3	Implementation and Testing.		

Scheme for End Semester Assessment (ESA)

Sl. No.	Expectation	Marks
1	Write up	05
	1. Problem Statement and Objectives.	
	2. System design with brief description.	
	3. Concluding remarks.	
2	Presentation: Prepare minimum of 15-18 slides of	05
	presentation with consultation of your respective guides.	
3	Demo (Complete execution of the project with results)	30
	and Viva voce.	
4.	Project Report.	10

<u>BACK</u>

Prog	ram: Bachelor of Engine	eering	Semester - VII	
Cour	Course Title: CIPE Course Code: 15EHS		A401	
L-T-P	? : Audit	udit Credits: Audit Contact Hrs: 2 hrs/we		eek
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 32		Exam Duration: 3 hrs	;
		Unit –I		
	Features of Indian Cor	stitution		
	Features of Indian Constitution, Preamble to the constitution of India,			
1.	Fundamental rights under Part III – details of Exercise of rights, Limitations			4 hrs
	& Important cases. Be	rubari Union and Exchange of I	Enclaves, Kesavanand	4 111 5
	-	ka Gandhi vs. UOI, Air India Ltd.	•	
		vs. St. of Karnataka, M.C. Mehta	vs. UOI etc.,	
_		principles of State Policy		
2.		principles of State Policy under	Part IV, Fundamental	3 hrs
	-	nce. Sarla Mudgal v. UOI		
_	Union			a h
3.	-	vice President, Union Council	of Ministers, Prime	4 hrs
	· · · · · · · · · · · · · · · · · · ·	the Supreme Court of India.		
4.	State – Governors, State Council of Ministers, Chief Minister, State			2 hrs
4.	Legislature and Judicia		inter winnster, state	2 11/5
			ec	
5.	Constitutional Provisions for Scheduled Castes & Tribes Constitutional Provisions for Scheduled Castes & Tribes, Women & Children			2 hrs
5.	& Backward classes, Emergency Provisions.			2
	Electoral process	<u> </u>		
6.	•	mendment procedure, 42nd	d, 44th and 86th	2 hrs
	Constitutional amendr	•		_
	1	Unit – II		
	Scope & Aims of Engineering Ethics			
	Scope & Aims of Engin	neering Ethics: Meaning and pu	rpose of Engineering	
7.	Ethics, Responsibility of	of Engineers, Impediments to re	sponsibility, Honesty,	5 hrs
	Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas			
	Tragedy, Titanic case.			
8.	Intellectual Property F	lights		3 hrs
0.	Intellectual Property Rights (IPRs)- Patents, Copyright and Designs			51115
	Ethical perspectives of	professional bodies		
9.		f professional bodies- IEEE, AS	ME, NSPE and ABET,	3 hrs
	ASCE etc.			

	Unit – III		
10.	0. Effects of human activities on environment		
	Effects of human activities on environment - Agriculture, Housing, Industry,		
	Mining, and Transportation activities, Environmental Impact Assessment,		
	Sustainability and Sustainable Development.		
11.	Environmental Protection	2 hrs	
	Environmental Protection – Constitutional Provisions and Environmental		
	Laws in India.		
Text Books (List of books as mentioned in the approved syllabus)			
1	. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005		
2	. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Centra	al Law	
	Publicaitons, Allahabad, 2010.		
3	. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", The	omson	
	Wadsworth, 2003		
References:			
1	. Durga Das Basu, "Introduction to the Constitution of India", Prentice-ha	II EEE,	
	2001		
2	2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill		

2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
Minor Exam-1	20
Minor Exam-2	20
Assignment	10
Total	50

Progra	am: Bachelor of Engineer	ing	Semester - VI	
Cours Skills(e Title: Industry Re AUDIT)	adiness & Leadership	Course Code: 23EHS	A304
L-T-P: 0.5-0-0 Credits: - Contact Hrs: 1hr /week				
ISA M	arks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ing Hrs: 16		Exam Duration: NA	
		Unit –I		
1	Written Communication	ו:		
	Successful Job Applicat	ons, Résumé Writing, Ema	ils, Letters, Business	
	Communication, Essay,	and Paragraph Writing for R	ecruitment Tests	6 hrs
2	Interview Handling Skil	ls:		
	Understanding Intervie	wer Psychology, Commor	n Questions in HR	
	Interviews, Grooming, I	nterview Etiquette		4 hrs
3	Lateral & Creative Thinl	king:		
	Lateral Thinking by Edward de Bono, Fractionation and Brain Storming,			
	Mind Maps, Creativity Enhancement through Activities4 hrs		4 hrs	
4	Team Building & Leadership Skills:			
	Communication in a Team, Leadership Styles, Playing a Team member,			
	Belbin's team roles, Eth	ics, Effective Leadership Stra	itegies	2 hrs
Text B				
	NA			
Refere	ence Books:			
		riting, Laxmi Publications		
		ateral Thinking – A Textbook		ו UK
		White – The Elements of Sty	•	
		e 17 Essential Qualities of	a Team Player, Harpe	erCollins
	Leadership			
	5. Robin Ryan – 60 Sec	onds and You're Hired! – Pe	nguin Books	

Program: Bachelor of Engineering		Semester - VI		
	Course Title: Professional Aptitude and Logical Reasoning (AUDIT) Course Code: 23EH		EHSA302	
L-T-P	: 3-0-0	Credits: -	Contact Hrs: 3hrs/week	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100)
Teacl	hing Hrs: 40		Exam Duration:	3 hrs
	Unit –I- Ar	ithmetical Reasoning and Analytic	al Thinking	
1	Arithmetical Reasoning			10hrs
2	Analytical Thinking			4 hrs
3	3 Syllogistic Logic		3hrs	
		Unit –II		
4	Verbal Logic			4 hrs
5	Non-Verbal Logic			4 hrs
		Unit –III- Lateral Thinking		
6	Lateral Thinking			4 hrs
Text Books:				
1.	A Modern Approach	to Verbal and Non – Verbal Reasor	ning – R. S. Aggarv	wal, Sultan
	Chand and Sons, Nev	v Delhi		
2. Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi				
Reference Books:				
1.Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India				
2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi				

Assessment	Weight age in Marks
ISA 1	15
ISA 2	15
Assignments Written	10
Class Tests	10
Total	50

**The indicated method may be adopted for CIE after due approval from DUGC of Department of Humanities.

Professional Electives – 4, 5 & 6

Prog	ram: Bachelor of Engin	eering		
Cour	rse Title: Social Networl	<pre>c Analysis</pre>	Course Code: 22EC	AE405
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA M	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40	Tutorial/Practical hrs :	Exam Duration: 03	hrs
		Unit –I		
	Introduction			
1.	Introduction: Motivat	ion, different sources of netw	ork data, types of	6 hrs
	networks, tools for vis	ualizing network data.		
	Structural properties	of networks		
2.	Structural properties of	of networks: Notions of central	ity, cohesiveness of	10 hrs
Ζ.	subgroups, roles an	d positions, structural equi	valence, equitable	10 1113
	partitions, stochastic b	lock models.		
		Unit –II		
	Cascading properties	of networks		
3.	Cascading properties	of networks: Information/infl	uence diffusion on	
5.	networks, maximizing	g influence spread, power la	w and heavy tail	10 hrs
	distributions, preferen	tial attachment models.		
	Small world phenome	non		
	Small world phenome	enon : Six Degrees of Separat	tion, Structure and	
4.	Randomness, Decentralized Search, Empirical Analysis and Generalized			6 hrs
	Models, Core-Periphe	ery Structures and Difficultie	s in Decentralized	
	Search, Advanced Material: Analysis of Decentralized Search.			
		Unit –III		
5.	Mining Graphs- I			4 hrs
	Mining Graphs- I: Com	munity and cluster detection: ra	andom walks.	
6.	Mining Graphs- II			4 hrs
		ctral methods; link analysis for v	veb mining.	
	Books:			
1	•	Katherine Faust, Social netw	ork analysis: metho	ds and
	•••	dge University Press, 1994.		
2	. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning			g About
	a Highly Connected World, Cambridge University Press, 2010.			
	Reference Books:			
1. Peter R. Monge, Noshir S, Contractor, Theories of communication network			tworks,	
	Oxford University Press, 2003.			
2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.				

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	numbers	
I	Q.No1, Q.No2,	1, 2	Solve Any 2 out of 3
	Q.No3		
II	Q.No4, Q.No5,	3, 4	Solve Any 2 out of 3
	Q.No6		
	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	

<u>BACK</u>

Prog	gram: Bachelor of Engine	ering			
Cou	rse Title: Information Re	trieval	Course Code: 22E	CAE406	
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 4 h	rs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Теас	Teaching Hrs: 30Tutorial/Practical: 28hrsExam Duration:		3 Hrs		
		Unit –I			
1	Introduction to IR:				
	Nature of unstructure	ed and semi-structured text,	Inverted index and		
	Boolean queries, Inde	x Construction.		04 hrs	
2	Basic IR Models:				
	Vector space, Term Fr	equency / Inverted Document	Frequency (TF-IDF),		
	Probabilistic, Vector s	pace scoring.		04hrs	
3	Query Operations:				
	Relevance feedback, G			6 hrs	
		Unit –II			
4	Performance Evaluat	ion:			
	Unranked and ranked	I retrieval evaluation, test co	llections, evaluating		
	search engines.			04hrs	
5	Text Categorization:				
	Introduction to text classification, Rocchio, and Nearest Neighbor,				
	Spam, Sentiment, and	I Online Advertising.		04hrs	
6	Text Clustering:				
		s, Analysis & Validation, Appli	cation Scenarios for		
	Search Results and Da	5		02hrs	
		Unit –III		1	
7	Search Engine and Lir	•			
		Web crawling and index	es. Search engine	0.51	
		, Hubs and Authorities		05hrs	
	t Books:				
1.		l Schutze, Introduction to Info	ormation Retrieval, Ca	ambridge	
h	University Press, 2009.	T Strokmon "Sooreh Fro	and Information Dat	twinnel in	
2.		T. Strohman, "Search Engi	ines information Re	trieval ir	
Def	Practice", Addison -Wes	ieγ, 2009.			
	erence Books:	inder "Information Datriana	I. Algorithms and Us	urictics"	
1.	Springer, 2004.	ieder, "Information Retrieva	I: Algorithms and He	euristics	
2.	Ceri. S Bozzon, A; Bran Information Retrieval",	nbilla, M ; Della Valle, E; Fra 2013.	aternali, ;Quarteroni,	, S "Wel	

Program: Bachelor of Engineering				
Course Title: Advanced Computer Graphics Course Code:		Course Code: 22	ECAE407	
L-T-F	P: 0-0-3	Credits: 3	Contact Hrs: 6 h	rs/week
ISA I	Marks: 100	ESA Marks: 00	Total Marks: 100	
Теас	hing Hrs:	Tutorial/Practical : 84hrs	Exam Duration: -	NA-
		*No Units	·	
1.	Review of Rasterization	on and Ray tracing		3 hrs
2.	Rendering acceleration data structures			3 hrs
3.	3. Applications of Texture mapping			3 hrs
4.	4. Physically based lighting models, global illumination			3 hrs
5.	Multi-pass shading techniques		6 hrs	
6.	6. Surface design and representation (Implicit and Parametric forms)			3 hrs
7.	Mesh Parameterizatio	n		6 hrs
8.	Mesh simplification			3 hrs
9.	Animation			3 hrs
10.	Virtual world design			6 hrs
11.	Volume rendering			3 hrs

Reference Material:

- 1. Peter Shirley, Fundamentals of Computer Graphics, 2009, A. K. Peters
- 2. Tomas Akenine-Moller, Eric Haines, and Naty Hoffman, Real-Time Rendering, 2008, A.K. Peters.
- 3. Henrik Wann Jensen, Realistic Image Synthesis Using Photon Mapping, 2001, A.K. Peters.
- 4. Watt A. and M. Watt, Advanced Animation and Rendering Techniques Theory and Practice, 1994, Addison-Wesley.
- 5. Foley, J.D., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, ISBN 0-201-12110-7. (Errata)
- 6. Neider, J., T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley, ISBN 0-201-63274-8.
- 7. Blinn J., A Trip Down the Graphics Pipeline. Jim Blinn's Corner, Morgan Kaufmann.
- 8. Luebke D., M. Reddy, J. Cohen, A. Varshney, B. Watson, R. Huebner, Level of Detail for 3D Graphics, 2003, Morgan-Kaufman.
- 9. Ebert D., F. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A Procedural Approach 2e AP Professional.
- 10. Parent, R., Computer Animation: Algorithms and Techniques Morgan Kaufmann.
- 11. Hoffman, C. Geometric and Solide Modeling Morgan Kaufmann.
- 12. Graphics Gems I-V, AP Professional.
- 13. Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory To Implementation.
- 14. Bretscher, O., Linear Algebra with Applications 2e Prentice Hall.

Scheme for End Semester Assessment (ESA): No ESA for the course

*Content and reference material as shared by IIT Delhi Professor

Program: Bachelor of Engi	neering		
Course Title: Generative A	Course Title: Generative AI Course Code: 24ECS		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/wee	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30	Tutorial/Practical : 28 hrs	Exam Duration: 3 h	rs
	Unit –I		
Chapter 1: Introduction to	Generative AI		
Definition, Overview of	Generative AI, Importance ar	nd applications of	2 hrs
Generative AI, Evolution of	AI towards generative models,	Key milestones and	2 11/5
breakthroughs in Generativ	ve Al.		
Chapter 2: Generative Mod	dels I:		
Autoencoders (AE) and Var	iational Autoencoders (VAEs) Ard	chitecture: Encoder,	
Decoder, Latent Space, Trai	ning with ELBO (Evidence Lower B	ound), Applications	
and limitations.			
Generative Adversarial	Networks (GANs): Architectur	e: Generator and	4 hrs
Discriminator, Training pr	ocess, loss functions, Commo	n issues, Variants:	
DCGAN, CycleGAN, StyleGA	N.		
Diffusion Models: Forward process (encoders), reverse process (decoders),			
score matching, guided diff	usion		
Chapter 3: Training and Eva	aluation of Generative AI Models	5:	
Optimization Methods: Gra	adient Descent, Stochastic Gradi	ent Descent (SGD),	
Adam Optimizer, Adam (A	daptive Moment Estimation), RN	1SProp (Root Mean	
Square Propagation), Adag	rad (Adaptive Gradient Algorithm), AdaDelta.	4 hrs
Evaluation Metrics: Incep	tion Score (IS), Frechet Incept	ion Distance (FID),	41113
Perplexity, Reconstruction	Error, Mode Score, Diversity M	etrics, Wasserstein	
Distance, Earth Mover's Dis	stance (EMD), BLEU Score		
Challenges: Mode collapse, stability, and convergence.			
	Unit –II		
Chapter 4: Generative Mod	dels II: Autoregressive Models		
Definition and Principle:	Autoregressive Property, Condit	ional Dependence,	
Autoregressive Process			
Examples of Autoregressi	ve Models: AR Models in Tin	ne Series Analysis,	4 hrs
Autoregressive Integrated I	Moving Average (ARIMA)		
Autoregressive Models for	Generative AI:		
	tecture, Training, Applications		
WaveNet - Overview, Archi	tecture, Training, Applications		

Chapter 5: Generative Models II: Transformers		
Introduction to Transformers, Origins and evolution from traditional sequence		
models (like RNNs and LSTMs) to transformers, self-attention mechanism, multi-		
head attention, position-wise feedforward networks.		
Transformer Architecture: breakdown of encoder and decoder stacks, Layer		
normalization and residual connections, Masked self-attention in the decoder	4 hrs	
for auto-regressive generation, Pre-training and Fine-tuning.		
Transformer-based Autoregressive Models: Overview, Architecture, Training,		
Applications, BERT (Bidirectional Encoder Representations from Transformers),		
T5 (Text-to-Text Transfer Transformer)		
Chapter 6: Generative Models II: Large Language Models (LLMs)		
Introduction to LLMs, Overview of Large Language Models (e.g., GPT-3, GPT-4),		
Training methodologies and scalability, Integration of LLMs in various generative	3 hrs	
tasks, Fine-tuning and transfer learning with LLMs, Building and deploying LLM-		
based applications.		
Unit –III		
Chapter 7: Advanced Topics in Generative AI:		
Flow-Based Models, Invertibility, Volume Preservation, Normalizing Flows,		
Invertible Convolution, Coupling Layers Sparse Attention Mechanisms,	F b u s	
Multimodal Generative Models, Meta-Learning and Few-Shot Learning,	5 hrs	
Continual Learning and Transfer Learning, Privacy-Preserving Generative		
Models, Quantum Generative Models		
Chapter 8: Ethical Considerations and Responsible AI:		
Bias and fairness in generative AI models, Privacy concerns and data protection	2 hrs	
in generative AI applications, Responsible use of generative models in society		

<u>BACK</u>

Cou	Course Title: Software Defined Networks Course Code: 22ECAE410			
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA	A Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	Arching Hrs: 40 Exam Duration: 3 hrs			
		Unit –I	·	
	Introduction			
1.	Evolving network red	uirements, Types of Networ	k and Internet Traffic, The	8 hrs
1.	SDN approach, Dat	a Center Networking: Big	Data over SDN, Cloud	0 111 5
	Networking over SDN	۱.		
	SDN Data Plane and	OpenFlow		
2.	Data plane function	s and protocols, OpenFlow	logical network device,	8 hrs
۷.	OpenFlow protocol,	OpenFlow messages, OpenFl	ow events: Responding to	0 111 5
	switches.			
		Unit –II		
	Control Plane			
3.	SDN Control plane architecture, POX architecture, OpenDaylight			8 hrs
	architecture, REST, Mininet based examples			
	Programming SDNs			
	Components in POX,	POX APIs, Registering Compo	onents, The Event System:	
4.	Handling Events, Cre	ating Your Own Event Types,	Raising Events, Binding to	8 hrs
	Components' Events,	Working with packets, Worki	ing with sockets: ioworker,	
	OpenFlow in POX.			
		Unit –III		
	Software Application	•		
5.	SDN Application Plar	e Architecture, Traffic Engine	eering, Measurement and	4 hrs
	Monitoring. Security Requirements, SDN Security.			
	Network Functions \	· · ·		
6.	OpenFlow VLAN Support, Virtual Private Networks, Network Virtualization:			4 hrs
•••	A Simplified Example, Network Virtualization Architecture, Benefits of			
Network Virtualization.				
Text Books:				
1. William Stallings, "Foundations of modern networking: SDN, NFV, QoE, IoT and				
Cloud", Addison Wesley; 1 edition, 2015.				
2.	Thomas D. Nadeau &	Ken Gray, "SDN - Software De	efined Networks", O'Reilly, 2	2013.

Reference Books:

- 1. Sreenivas Voruganti, Sriram Subramanian, "Software-Defined Networking (SDN) with OpenStack", Packt Publishing, 2016.
- 2. POX manual current documentation, https://openflow.stanford.edu/display/ONL/POX+Wiki.html

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	

Program: Bachelor of Engineering				
Cou	Course Title: Cyber Security Course Code: 22ECA			E411
L-T-P: 2-0-1 Credits: 3 Contact		Contact Hrs: 4 hrs/v	week	
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100	
Теас	ching Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 h	rs
		Unit - I		
1.	Cybersecurity Fundamentals, Overview of Web, network, Database, mobile,			6 hrs
2.	IoT and cloud security, Threat Intelligence and Incident ResponseCyber-crime and Cyber law: Classification of cyber-crimes, Common cyber- crimes- cyber-crime targeting computers and mobiles, cyber-crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi , Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organization's dealing with Cyber crime and Cyber security in India, Case studies.			6 hrs
	Unit - II			
3.	Hashtag, Viral conter Challenges, opportun issues related to soc	r: Social media platforms, Sociant, Social media marketing, Social media marketing, Social ities and pitfalls in online social media, Flagging and reporting posting of inappropriate contera, Case studies.	ocial media privacy, al network, Security ing of inappropriate	6 hrs
4.	Commerce security, practices, Introduction and stake holders, N Payment Interface (U Data (USSD), Aadhar e frauds and preventive customer protection	Main components of E-Comm E-Commerce threats, E-Comm to digital payments, Componer Iodes of digital payments- Bai PI), e-Wallets, Unstructured Su enabled payments, Digital payme e measures. RBI guidelines on o in unauthorized banking tra Settlement Act, 2007.	herce security best its of digital payment hking Cards, Unified pplementary Service ents related common digital payments and	6 hrs

Unit - III				
	Digital Devices Security, Tools and Technologies: End Point device and			
	Mobile phone security, Password policy, Security patch management, Data			
F	backup, Downloading and management of third-party software, Device	6 hrs		
5.	backup, Downloading and management of third-party software, Device security policy, Cyber Security best practices, Significance of host firewall	oms		
	and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security,			
	Configuration of basic security policy and permissions.			

Reference Books:

- 1. Nina Godbole, Sunit Belapure, "Cyber Security", Wiley India.
- 2. R C Mishra, "Cyber Crime Impact in the New Millennium", Auther Press
- 3. Henry A. Oliver, "Security in the Digital Age: Social Media Security Threats and Vulnerabilities", Create Space Independent Publishing Platform
- 4. Elias M. Awad, "Electronic Commerce Prentice", Hall of India Pvt Ltd.

Scheme for End Semester Assessment (ESA)

r				
UNIT	8 Questions to be set of 20	Chapter	Instructions	
	Marks Each	Nos.		
I	3 Questions to be set of 20	1,2	Any 2 questions are to be	
	Marks Each		answered	
II	3 Questions to be set of 20	3,4	Any 2 questions are to be	
	Marks Each		answered	
	2 Questions to be set of 20	5,6	Any 1 question is to be	
	Marks Each		answered	

Cyber Security – Tutorial

Practical assignments on

	Exercises	Slots
1. Phis	shing attack	1
2. SQL	. injection	1
3. CSR	F attack	2
4. XSS	attack	2
5. Pass	sword cracking	1
6. Mai	n In The Middle attack	2
7. Has	h calculation	1
8. File	encryption -	2
9. DoS	S Attack	2

Program: Bachelor of Engineering					
Cour	se Title: Mobile and W	/ireless Networks	Course Code: 22ECA	AE412	
L-T-P	:3-0-0	Credits: 3	Contact Hrs: 3 hrs/v	week	
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teach	hing Hrs: 40		Exam Duration: 3 h	rs	
		Unit –I			
	Introduction: Charac	teristics of Cellular Systems, Fund	amentals of Cellular		
1.	Systems, Cellular System Infrastructure, Satellite Systems, Network			4 hrs	
1.	Protocols, Ad Hoc Networks, Sensor Networks, Wireless LANs, MANs and			41115	
	PANs.				
	Mobile Radio Pro	bagation: Introduction, Types	of Radio Waves,		
2.	Propagation, Mechar	nisms, Free Space Propagation, Lan	d Propagation, Path	6 hrs	
	Loss, Doppler Effect	Delay Spread, Intersymbol Inter	ference, Coherence	0	
	and width Cochanne	l Interference.			
	Cellular Concept:	Introduction, Cell Area. Signal	Strength and Cell		
3.	Parameters, Capacity	y of a Cell, Frequency Reuse, How	v to Form a Cluster,	6 hrs	
	Cochannel interferer	ice, Cell Splitting, Cell Sectoring.			
Unit –II					
	Mobile Communio	ation Systems: Introduction,	Cellular System		
	Infrastructure, Registration, Handoff Parameters and Underlying Support,				
4.	Parameters Influencing Handoff, Handoff Underlying Support, Roaming				
	Support, Home Agents, Foreign Agents, and Mobile IP, Rerouting in				
		Iulticasting. (Chapter 10 from Text			
	Mobile network and transport layer: Mobile IP Packet delivery-Tunneling-				
5.	Reverse tunneling, IPV6-Dynamic host routing protocol, Traditional TCP-			5 hrs	
	Congestion control-classical TCP-Snooping Mobile TCP, Transaction				
	oriented TCP-TCP over 2.5/3G Wireless Networks.				
		Mobile Networks: Drivers for 5			
6.		Mobile Networks. Cooperation for	or Next Generation	6 hrs	
	Wireless Networks				
Unit –III					
7.		chnology and Services for Futu	ire Communication	4 hrs	
		Radio for 5G Wireless Networks.			
		technologies: Femtocell Netwo			
8.		hallenges Push-to-Talk (PTT) Tech	•••	4 hrs	
		r, PTT in iDEN Cellular Networks	s, PTT in Non-iDEN	N	
	Cellular Networks: Po	oC. (Chapter 16)			

Text Books:

- 1. Dharma Prakash Agrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.
- 2. Rodriguez, Jonathan. Fundamentals of 5G mobile networks. John Wiley & Sons, 2015.
- 3. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.
- 4. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited, 2011.

Reference Books:

- 1. Wireless telecommunications systems and networks by Gray J. Mullet, Cengage Learning, Reprint 2014.
- 2. Upena Dalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. Martyn Mallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
	Q.No8	6	Solve Ally I

Scheme for End Semester Assessment (ESA)

Prog	ram: Bachelor of Enginee	ring		
Course Title: Advanced Parallel Computing Course Code: 22ECA				
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/			week
ISA I	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	Teaching Hrs: 40 Exam Duration: 3 hr			5
		Unit –I	•	
1.	Introduction and History GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel Programming Languages and Models; Overarching Goals; Evolution of Graphics Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of Programmable Real-Time Graphics; Unified Graphics and Computing Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs Recent Developments; Future Trends.			7 hrs
2.	Introduction to CUDAData Parallelism; CUDA Program Structure; A Matrix-Matrix MultiplicationExample; Device Memories and Data Transfer; Kernel Functions andThreading; Function declarations; Kernel launch; Predefined variables;Runtime API.CUDA Thread Organization; Using b1ock Id x and thread Id x ;Synchronization and Transparent Scalability; Thread Assignment ; ThreadScheduling and Latency Tolerance.			9 hrs
Unit –II				
3.	 CUDA Memories Importance of Memory Access Efficiency; CUDA Device Memory Types; A Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources; Data Prefetching; Instruction Mix; Thread Granularity; Measured Performance. 			7 hrs
4.	Introduction to OPENCL Introduction to OPENCL; Background; Data Parallelism Model; Device Architecture; Kernel Functions; Device Management and Kernel Launch; Electrostatic Potential Map in OpenCL.			9 hrs
		Unit –III		
5.		gn, Applications like Matrix r Visualization and Gaming.	multiplication, MRI	4 hrs

Parallel Programming and Computational Thinking

6. Goals of Parallel Programming, Problem Decomposition, Algorithm **4 hrs** Selection, Computational Thinking.

Text Books:

1. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

 Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
11	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
ш	Q.No7	5	Solve Any 1
	Q.No8	6	

Progra	am: Bachelor of Enginee	ring			
Cours	e Title: Scalable AI		Course Code:22ECAE415	5	
L-T-P:	-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/wee		Contact Hrs: 3 hrs/wee	k	
ISA M	SA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100		
Teach	Teaching Hrs: 40 Exam Duration: 3 Hrs				
		Unit –I			
	Scaling Up Machine Lea	arning:			
1	Introduction, Machine	Introduction, Machine Learning Basics, Reasons for Scaling Up Machine			
-	Learning, Key Concept	s in Parallel and Distribut	ed Computing, Platform	4 hrs	
	Choices and Trade-Offs	, Thinking about Performa	nce		
	MapReduce and the No	ew Software Stack:			
2	Distributed File System	ms, MapReduce, Algorith	nms Using MapReduce,	6 hrs	
_		MapReduce, Extensions	•	••	
		lodel, Complexity Theory f	for MapReduce		
	Finding Similar Items:				
3		Similarity, Shingling of	· •	6 hrs	
		of Sets, Locality-Sensitive	U		
	Distance Measures, The Theory of Locality-Sensitive Functions				
Unit –II					
	Link Analysis:	www.station.of Dasa Darah. T		5 hrs	
4	PageRank, Efficient Computation of PageRank, Topic-Sensitive PageRank,				
	Link Spam, Hubs and Authorities.				
	Frequent Itemsets:				
5	The Market-Basket Model, Market Baskets and the A-Priori Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms,			6hrs	
	Counting Frequent Item	-	Algorithms,		
	Clustering:				
6	-	ring Techniques, Hierarch	ical Clustering. K-means	5 hrs	
		Algorithm, Clustering in No	•		
	Parallel Online Learnin				
7	Limits Due to Bandwidth and Latency, Parallelization Strategies, Delayed			4 hrs	
	Update Analysis, Parallel Learning Algorithms, Global Update Rules				
	Parallel Large-Scale Fe	ature Selection:			
8	Logistic Regression, F	eature Selection, Paralle	lizing Feature Selection	4 hrs	
	Algorithms, Scalable machine learning tools (Hadoop, Spark etc.)				

Textbooks

- 1. Scaling Up Machine Learning, Bekkerman, R., Bilenko, M., Langford, J., (2011), Cambridge University Press
- 2. Mining of Massive Datasets. 2nd edition. Jure Leskovec, Anand Rajaraman, Jeff Ullman. Cambridge University Press. <u>http://www.mmds.org/</u>

Reference Books

- 1. Hadoop: The definitive Guide. Tom White. Oreilly Press.
- 2. Tensorflow for Machine Intelligence: A hands on introduction to learning algorithms. Sam Abrahams et al. Bleeding edge press.

Semester – VIII

Program: Bachelor of Engineering		Semester - VIII		
Course Title: Industry Training		Course Code: 22ECAI402		
L-T-P: 0-0-6 Credits: 6		Contact hrs: 12hrs/week		
ISA Marks: 50 ESA Marks: 50		Total Marks: 100		
Teaching hrs:		Exam Duration: 3 hrs		
Overview of the Course				

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain firsthand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

CO 1.Enhance their employ ability skills and become job ready along with real corporate exposure.

CO 2.Acquire knowledge in one particular technology.

CO 3.Demonstrate leadership ability and responsibility to perform the given task.

CO 4.Offered jobs in the organizations in which they undergo their Industrial Training.

CO 5.Demonstrate common practices, employment opportunities and work ethics in their relevant

Course	Course	Max ISA	Max ESA	Minimum Passing	
	Code	marks	marks	Marks	
Industry Training	18ECSI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.	

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

KLE Technological University's Industry Internship: Rules, Regulations and Timelines for BE 2020 passing out students-

Internship Start Date: 6th January, 2020

Internship End Date: 31st May, 2020 (exceptional cases up to 30th June, 2020) Total Duration: 5 months full time (No breaks)

- 1. Students of 8th semester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and ii) Internship Project
- i) Internship- Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
- ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webex or personal visit to the industry.
- 4. Expectations at the end of the Internship
- a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
- b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

Program: Bachelor of	Semester - VIII			
Course Title: Industry	Course Code: 22ECAI401			
L-T-P: 0-0-11	Credits: 11	Contact hrs: 22hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching hrs:		Exam Duration: 3 hrs		
Overview of the Course				

Overview of the Course

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Course Learning Outcomes.

CO 1. Identify the problem and perform requirement analysis

CO 2. Design potential solutions and evaluate to select optimal solution

CO 3.Apply professional norms of project implementation to meet specified requirements

CO 4.Apply fundamental activities of module, integration and system testing to validate the system

CO 5.Analyze results and present technical/scientific findings effectively through written and oral mode

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA	Max ESA	Minimum Passing Marks	
		marks	marks		
Industry	18ECSW494	50	50	Students must secure	
Project				minimum of 40% marks in	
				both ISA and ESA.	

<u>KLE Technological University's Industry Internship: Rules, Regulations and Timelines for</u> <u>BE 2020 passing out students</u>-

Internship Start Date: 6th January, 2020

Internship End Date: 31st May, 2020 (exceptional cases up to 30th June, 2020)

Total Duration: 5 months full time (No breaks)

- 1. Students of 8th semester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and ii) Internship Project
 - i) Internship- Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webex or personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

Program: Bachelor of Engine	Semester - VIII	
Course Title: Capstone Proje	Course Code: 22ECAW402	
L-T-P: 0-0-11 Credits: 11		Contact Hrs: 3 hrs/week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3hrs

Course Content

Eighth Semester Capstone project: Design a suitable solution for the identified problem and apply professional norms of project implementation to meet specified requirements.

Project domains:

Networking	Data Engineering	System Engineering	
Internet of Things	Data Analytics	Parallel Computing	
 Cloud Computing 	Data Processing:	• HPC (High	
SDN (Software Defined	 Image and video 	Performance	
Network)	processing	Computing)	
SNA(Social Network	 Computer Vision and 	Parallel system	
Analysis)	Graphics	design	
	 NLP(Natural Language 		
	Processing)		

Students Assessment through ISA (50%) + ESA (50%)

Internal Semester	Assessment	Weightage in Marks
Assessment* (50%)	Periodic reviews by Project Guide	25
	Periodic reviews by Committee	25
End Semester	Final Review	50
Assessment (50%)	Total	100

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation		
Review-1	Motivation, Literature Survey, Problem Analysis and Problem formulation, Objectives, Oral Communication		
Review-2	High Level Design/Methodology, Suitable data structures and programming paradigm, Modern tools & techniques used, Module implementation & amp; integration, Presentation & Report		

Deview 2	Complete Project Demo, Report, Presentation / Pa	aper
Review-3	Publication	

Scheme for End Semester Assessment (ESA)

SI. No	Expectation	Marks
1	Literature Survey/ Existing Methods	15
2	Methodology and Implementation details, Results and Discussions	20
3	Project demonstration.	10
4.	Relevance of project to ethical/ social/ legal/ economic concerns	05
	Total	50

Open Electives

Prog	ram: Bachelor of Engine	eering		
Course Title: High Performance Computing for				
Engineering Applications Course Code:22ECAO402				
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/wee	k
ISA M	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40		Exam Duration: 3 hrs	
		Unit –I		
1.	Introduction to High P	erformance Computing:		8 hrs
	Computational Science	e and Engineering Applicat	ions; characteristics and	
	requirements, Review	of Computational Complexi	ty, Performance: metrics	
	and measurements	s, Granularity and	Partitioning, Locality:	
		m/kernel, Basic methods for		
	Real-world case studie	s like CFD, Bioinformatics, F	low analysis etc.	
2.	High Performance Con			8 hrs
	,	s, Multi-core Processors	0	
	-	ed-memory Symmetric I	-	
	Computers, Distributed Memory Computers, Supercomputers and			
	Petascale Systems, Application Accelerators / Reconfigurable Computing,			
	Novel computers: Strea	am, multithreaded, and pur	pose-built	
Unit –II				
3.	Parallel Algorithms:			8 hrs
		and real frameworks, Bas	·	
		ing, Divide and Conque		
		perations and Linear Algeb	, , ,	
		Randomization: Parallel P	seudo-Random Number	
	Generators, Sorting, M			
4.	Parallel Programming:			8 hrs
		in applications, Task and Fu		
		ization Methods, Paralle	•	
operations), SPMD Programming (threads, OpenMP, MPI)				
-	Ashiauing Daufaurus	Unit –III		4
5.	Achieving Performan		formanco hattlanacka	4 hrs
	0 1		formance bottlenecks,	
	• • • • •	ations for deep memory		
		rogeneous resources, using	s existing libraries, tools,	
	and frameworks			

6.	Case Studies and Projects done during the course:	4 hrs
	Various case studies from various engineering discipline	
Text B	ooks	
1.	Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Ka	arypis,
	and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.	
2.	Petascale Computing: Algorithms and Applications, David A. Bader	(Ed.) <i>,</i>
	Chapman & Hall/CRC Computational Science Series, 2007	
Refere	nce Books:	
1.	G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and M	VIPI: A
	Seamless Approach to Parallel Algorithms and their Implementation, Cam	bridge

- University Press,2003.
- 2. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

UNIT	UNIT 8 Questions to be set of Chapter		Instructions
	20 Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally 1

Scheme for End Semester Assessment (ESA)

Prog	Program: Bachelor of Engineering			
Course Title: Essentials of Information Technology Course Code:22EC				
L-T-P	L-T-P: 0-0-3 Credits: 3 Contact Hrs: 6 hrs/wee			
ISA N	/larks: 80	ESA Marks: 20	Total Marks: 100	
Теас	hing Hrs:	Tutorial/Practical : 84hrs	Exam Duration:	3 hrs
		Unit - I		
1.	networks, softwa	mputer systems: mputer systems, program executic are and its classification, Op mory management, process n	perating System:	6 hrs
2.	Programming basics: Introduction to problem solving, SDLC overview and need for object oriented approach, object oriented concepts, introduction to java, control structures, arrays, strings.			6 hrs
 Classes and Objects: Class fundamentals, access specifiers, constructors and its types, method overloading, static members. 			4 hrs	
		Unit – II		
4.	 Data structures: Introduction, Linear data structures: stack, queue, linked lists, Non-Linear data structures: trees, binary search tree, illustration using java collection framework. 			5 hrs
5.	Inheritance and Polymorphism: Inheritance: basics, types of inheritance, method overloading and overriding, dynamic method dispatch.			5 hrs
6.	Introduction to p	es and Exceptions: backages, access protection, inte sm, and user defined exceptions.	rfaces, exception	6 hrs

	Unit - III				
7.	Database Design Process: Characteristics of DBMS, ER model, mapping ER model to relational schema, normalization.	4 hrs			
8.	Structured Query Language:	4 hrs			
	SQL data types, database languages, operators, aggregate functions, order				
	by and group by clause, joins and sub queries.				
Text	Books:				
1.	Infosys Campus Connect Foundation Program Volume:1-3, Education	on and			
	Research Department, Infosys Technologies Ltd, 2013.				
2.	Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill,	, 2012.			
Refe	Reference Books:				
1.	Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition,	Pearson			
	Education, 2011.				
2.	Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Editior	n, Wiley,			

 Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
I	Project Examination	4 - 8	Project implementation and demonstration 20 marks

Prog	ram: Bachelor of Engine	eering		
Cour	rse Title: Software Engir	neering	Course Code: 22ECA	D403
L-T-P	-P: 3-0-0 Credits: 3		Contact Hrs: 3 hrs/week	
ISA M	Marks: 50	ESA Marks: 50	Total Marks: 100	
Теас	hing Hrs: 40		Exam Duration: 3 h	s
		Unit –I		
1.	studies, Software proc	development, Software en cesses: Software process mo he rational unified process, 0	dels, Process activities,	6 hrs
2.	Agile Software Development Agile methods, Plan-driven and agile development, Extreme programming, Agile project management.		4 hrs	
3.	Requirement EngineeringFunctional and Non-functional requirements; The softwarerequirements Document, Requirement specification, RequirementsEngineering Processes, Requirement's elicitation and analysis;Requirements validation; Requirements management.			6 hrs
		Unit –II		
4.	System Modeling Context models, Inte models.	eraction Models, Structura	al models, Behavioral	6 hrs
5.	Architectural Design Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.		5 hrs	
6.		gn and implementation gn using UML, design patt evelopment.	erns, Implementation	5 hrs
l		Unit –III		

Software Testing

7. Development Testing, Test Driven Development, Release Testing, User4 hrsTesting.

Configuration management

8. Change management, Version management, System building, Release 4 hrs management.

Text Books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

Reference Books:

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw,2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

Prog	gram: Bachelor of Enginee	ering		
Course Title: Big Data Analytics Course Code: 22ECAO			0406	
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/w	eek
ISA	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Теас	ching Hrs: 40		Exam Duration: 3 hrs	5
		Unit –I		
1.	Introduction: Data An	alytics, Data Analytics Li	fe Cycle, Big Data	4 hrs
	Characteristics, Differen	t Types of Data.		
2.	Big Data Technologies	: Parallel Data Processin	g, Distributed Data	8 hrs
	Processing, Hadoop, Sp	ark		
3.	Nosql: NoSQL Database	es, Document databases, I	Key-value databases,	4 hrs
	Wide-column stores, Gra	aph databases		
		Unit –II		
4.	Big Data Modeling: Da	ta Model Structures, Data	Model Operations,	8 hrs
	Processing Workloads, P	rocessing in Batch Mode, Pr	ocessing in Real-time	
	Mode.			
5.	MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types		8 hrs	
in MongoDB, MongoDB Query Language.				
		Unit –III		
6.	Big Data Visualization: F	live - Hive Architecture, Hive	e Data Types, Hive File	4 hrs
	Format, Hive Query Lan	guage (HQL).		
7.	Big data applications and	d case study: Stock market a	nalysis, weather data	4 hrs
	analysis			
Text	Books:			
1.	Thomas Erl, Wajid Khatt	ak, and Paul Buhler, Big D	oata Fundamentals Co	ncepts,
	Drivers & Techniques, Pre	entice Hall, 2015.		
2.	Seema Acharya, Subhash	ini Chellappan, Big Data &	Analytics, Wiley India	Pvt Ltd
	2014			
Refe	Reference Books:			
1.	Frank J Ohlhorst, Big Data	and Analytics: Turning Big D	oata into Big Money, W	iley and
	SAS Business Series, 2012	2.		
2.		ning and Predictive Analysi	s: Intelligence Gather	ing and
	Crime Analysis, Elsevier, 2007.			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set	Chapter	Instructions
	of 20 Marks Each	Numbers	
I	Q.No1, Q.No2,	1, 2, 3	Solve Any 2 out of 3
	Q.No3		
II	Q.No4, Q.No5,	4, 5	Solve Any 2 out of 3
	Q.No6		
111	Q.No7	6	Solve Any 1 out of 2
	Q.No8	7	

<u>BACK</u>